Math, asked by parekhsuchita1365, 4 months ago

Integral x(root of x²+1)dx

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

\longrightarrow \:  \tt \: Let \: I  \:  =  \int \: x \sqrt{ {x}^{2} + 1 } dx

\longrightarrow \:  \tt \:  \red{Put \:  \sqrt{ {x}^{2}  + 1}  = y}

☆ On differentiate both sides w. r. t. x, we get

\longrightarrow \:  \tt \: \dfrac{d}{dx}  \sqrt{ {x}^{2}  + 1}  = \dfrac{dy}{dx}

\longrightarrow \:  \tt \: \dfrac{1}{2 \sqrt{ {x}^{2} + 1 } }  \times 2x = \dfrac{dy}{dx}

\tt\implies \:\dfrac{x}{y}  = \dfrac{dy}{dx}

\tt\implies \:x \: dx = y \: dy

\longrightarrow \:  \tt \: So,  \: I  \:  =  \int \: y \times ydy

\longrightarrow \:  \tt \: I  =  \int \:  {y}^{2} dy

\longrightarrow \:  \tt \: I  = \dfrac{ {y}^{3} }{3}  + c

\longrightarrow \:  \tt \: I  = \dfrac{ {( {x}^{2} + 1) }^{ \frac{3}{2} } }{3}  + c

Similar questions