Math, asked by BrainlyTurtle, 9 days ago

#Integrals

#Quality Question

Question >>>

Find Value of
 \int \dfrac{1}{ \sqrt{ {sin}^{3} x \: sin(x +  \alpha )} } dx \\  \\  \alpha  \ne n\pi \:  \:  \:  \: n  = integer

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given integral is .

 \red{\rm :\longmapsto\: \displaystyle\int \dfrac{1}{ \sqrt{ {sin}^{3} x \: sin(x + \alpha )} } dx}

We know,

 \blue{ \boxed{\bf  \:sin(x + y) = sinxcosy + sinycosx}}

Using this, we get

\rm  \:  = \: \displaystyle\int \dfrac{1}{ \sqrt{ {sin}^{3} x \: (sinxcos\alpha + sin \alpha cosx )} } dx

Take out sinx common from denominator, we get

\rm  \:  = \: \displaystyle\int \dfrac{1}{ \sqrt{ {sin}^{4} x \: (cos\alpha + sin \alpha \dfrac{cosx}{sinx} )} } dx

\rm  \:  = \: \displaystyle\int \dfrac{1}{ \sqrt{ {sin}^{4} x \: (cos\alpha + sin \alpha cotx )} } dx

\rm  \:  = \: \displaystyle\int \dfrac{1}{  {sin}^{2}x \sqrt{ (cos\alpha + sin \alpha cotx )} } dx

\rm  \:  = \: \displaystyle\int \dfrac{ {cosec}^{2} x}{ \sqrt{ (cos\alpha + sin \alpha cotx )} } dx

Now, we use method of Substitution, to evaluate this integral further.

 \red{\rm :\longmapsto\:Put \: cos \alpha  + sin \alpha cotx = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\:\dfrac{d}{dx}(cos \alpha  + sin \alpha cotx) = \dfrac{d}{dx}y}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}cos \alpha  + \dfrac{d}{dx}sin \alpha cotx= \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:sin \alpha \dfrac{d}{dx}cotx= \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\: - sin \alpha   \: {cosec}^{2}x = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:  {cosec}^{2}x \: dx = -  \dfrac{dy}{sin \alpha }}

 \red{\rm :\longmapsto\:  {cosec}^{2}x \: dx = -cosec \alpha  \: {dy}}

So, on substituting these values, in above integral,

\rm  \:  =  - \:cosec \alpha  \displaystyle\int \dfrac{ 1}{ \sqrt{ y} } dy

\rm  \:  =  - \:cosec \alpha  \displaystyle\int  {\bigg(y\bigg) }^{ - \dfrac{1}{2} }  dy

\rm \:  =  \:  \:  - cosec \alpha  \: \dfrac{ {\bigg(y\bigg) }^{ - \dfrac{1}{2} + 1 } }{ - \dfrac{1}{2}  + 1}  + c

\rm \:  =  \:  \:  - cosec \alpha  \: \dfrac{ {\bigg(y\bigg) }^{ \dfrac{ - 1 + 2}{2}} }{ \dfrac{ - 1 + 2}{2}}  + c

\rm \:  =  \:  \:  - cosec \alpha  \: \dfrac{ {\bigg(y\bigg) }^{ \dfrac{1}{2}} }{ \dfrac{1}{2}}  + c

\rm \:  =  \:  \:  - 2 \: cosec \alpha  \:  \sqrt{y}  + c

\rm \:  =  \:  \:  - 2 \: cosec \alpha  \:  \sqrt{cos \alpha  + sin \alpha  \: cotx}  + c

\rm \:  =  \:  \:  - 2 \: cosec \alpha  \:  \sqrt{cos \alpha  + sin \alpha  \: \dfrac{cosx}{sinx} }  + c

\rm \:  =  \:  \:  - 2 \: cosec \alpha  \:  \sqrt{ \dfrac{sinx \: cos \alpha  \:  + sin \alpha  \: cosx}{sinx} }  + c

\rm \:  =  \:  \:  - 2 \: cosec \alpha  \:  \sqrt{ \dfrac{sin(x \: +  \: \alpha)}{sinx} }  + c

Hence,

The solution of

 \red{\rm :\longmapsto\: \displaystyle\int  \bf \: \dfrac{1}{ \sqrt{ {sin}^{3} x \: sin(x + \alpha )} } dx}

\bf \:  =  \:  \:  - 2 \: cosec \alpha  \:  \sqrt{ \dfrac{sin(x \: +  \: \alpha)}{sinx} }  + c

Additional Information :-

 \blue{ \boxed{\displaystyle\int\bf kdx = kx + c}}

 \blue{ \boxed{\displaystyle\int\bf  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}  + c}}

 \blue{ \boxed{\displaystyle\int\bf  {e}^{x} dx =  {e}^{x}  + c}}

 \blue{ \boxed{\displaystyle\int\bf  {a}^{x} dx =   \frac{ {a}^{x} }{loga}  + c}}

 \blue{ \boxed{\displaystyle\int\bf cosx \: dx = sinx + c}}

 \blue{ \boxed{\displaystyle\int\bf sinx \: dx =  -  \: cosx + c}}

 \blue{ \boxed{\displaystyle\int\bf cosecx \: cotx \: dx =  -  \: cosecx + c}}

 \blue{ \boxed{\displaystyle\int\bf secx \: tanx \: dx =   \: secx + c}}

Answered by sharma78savita
25

Answer:

hope it helps you

Similar questions