Math, asked by SANTANUE772, 1 year ago

integrate: (0 to pi/4) 1/cos^3x (whole root)(2sin 2x):

Answers

Answered by RitaNarine
2

Integral ( 0 to pi / 4 ) 1 / cos^{3}x\sqrt{2sin2x} is equal to 12 / 5\sqrt{2}

Consider the integral without the limits.

We know 1 / cosx =  secx

  • \frac{dx}{cos^{3}(x)\sqrt{2sin2x}  }  =  ∫ sec^3x dx/( \sqrt{2sin2x}) =
  • ∫ sec ^ 3x dx / (  \sqrt{2sin2x} )  =  ∫ sec ^ 3x dx / ( \sqrt{2sinxcosx})

Multipying and dividing by secx ,

  • ∫ sec ^ 3x dx / ( \sqrt{2sinxcosx})  =  ∫ sec ^ 3x . sec x dx /  sec x . \sqrt{2sinxcosx}

  • ∫ sec ^ 3x . sec x dx / sec x . \sqrt{2sinxcosx}   = ∫ sec ^ 3x . sec x dx / (\sqrt{2\frac{sinx}{cosx}\frac{cosx}{cosx}  })

  • ∫ sec ^ 3x . sec x dx / (\sqrt{2\frac{sinx}{cosx}\frac{cosx}{cosx}  })   =  ∫ sec ^ 2x . sec ^ 2x dx / \sqrt{2tanx}

Also, sec ^ 2x  =  1 + tan ^ x

  • ∫ sec ^ 2x . sec ^ 2x dx / \sqrt{2tanx}  = ∫sec ^ 2x ( 1 +  tan ^ x ) dx / \sqrt{2tanx}

Substituting t  =  tanx ,  dt  =  sec ^ 2 ( x ) dx

  • sec^{2}x ( 1 + tan ^ x ) dx / \sqrt{2tanx}  =   \frac{1}{\sqrt{2} } (\frac{2}{5}  t^{\frac{5}{2} } x  + 2\sqrt{t} )

Substituting back t  =  tanx , gives

  • sec^{2}x(  1 +  tan ^ x ) dx / \sqrt{2tanx}   =  \frac{1}{\sqrt{2} } (\frac{2}{5}  tan^{\frac{5}{2} } x  + 2\sqrt{tanx} )

Applying limits x from 0 to \frac{\pi }{4} , tan\frac{\pi }{4} = 1 and tan 0 = 0,

Integral Value  =  1/\sqrt{2} ( 2 / 5 + 2 )  =  12 / 5\sqrt{2}

Similar questions