integrate: (0 to pi/4) 1/cos^3x (whole root)(2sin 2x):
Answers
Answered by
2
Integral ( 0 to pi / 4 ) 1 / is equal to 12 / 5
Consider the integral without the limits.
We know 1 / =
- ∫ = ∫ sec^3x dx/( ) =
- ∫ sec ^ 3x dx / ( ) = ∫ sec ^ 3x dx / ( )
Multipying and dividing by ,
- ∫ sec ^ 3x dx / ( ) = ∫ sec ^ 3x . sec x dx / sec x .
- ∫ sec ^ 3x . sec x dx / sec x . = ∫ sec ^ 3x . sec x dx / ()
- ∫ sec ^ 3x . sec x dx / () = ∫ sec ^ 2x . sec ^ 2x dx /
Also, sec ^ 2x = 1 + tan ^ x
- ∫ sec ^ 2x . sec ^ 2x dx / = ∫sec ^ 2x ( 1 + tan ^ x ) dx /
Substituting t = tanx , dt = sec ^ 2 ( x ) dx
- ∫ ( 1 + tan ^ x ) dx / =
Substituting back t = tanx , gives
- ∫( 1 + tan ^ x ) dx / =
Applying limits x from 0 to , tan = 1 and tan 0 = 0,
Integral Value = 1/ ( 2 / 5 + 2 ) = 12 / 5
Similar questions