Math, asked by krutikaD04, 21 days ago

integrate 1/(1 - sin x) dx from - π/4 to π/4


please write answer for 3marks

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\rm{\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\dfrac{dx}{1-sin(x)}}

\displaystyle\rm{=\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\dfrac{dx}{2\,sin^2\left(\dfrac{x}{2}\right)}}

\displaystyle\rm{=\dfrac{1}{2}\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\,cosec^2\left(\dfrac{x}{2}\right)\,dx}

\bf{Put\,\,\,\dfrac{x}{2}=t}

\bf{\implies\dfrac{dx}{2}=dt}

\displaystyle\rm{=\int^{\frac{\pi}{8}}_{-\frac{\pi}{8}}\,cosec^2(t)\,dt}

\displaystyle\rm{=-\Big[cot(t)\Big]^{\frac{\pi}{8}}_{-\frac{\pi}{8}}}

\rm{=-\left[cot\left(\dfrac{\pi}{8}\right)-cot\left(-\dfrac{\pi}{8}\right)\right]}

\rm{=-\left[cot\left(\dfrac{\pi}{8}\right)+cot\left(\dfrac{\pi}{8}\right)\right]}

\rm{=-2\,cot\left(\dfrac{\pi}{8}\right)}

Similar questions