integrate 1/(1-x-x^2) dx
Answers
Answered by
2
Answer:
I=integ. of dx/(1-x-x^2)
I=integ. of dx/[1 -(x^2+x)]
I=integ. of dx/[ 1 - (x^2 +x +1/4)+1/4]
I=integ. of dx/[{(5^1/2)/2} ^2-(x+1/2)^2]
Let x+1/2= { (5)^1/2}/2 sinA
dx={(5)^1/2} cosA.dA
I=integ.of 2/(5)^1/2 secA dA
I=2/(5)^1/2 log(secA +tanA)+logk
With the help sinA=(2x+1)/(5)^1/2 put secA={(5)^1/2}/{2(1-x-x^2)^1/2} and tanA=(2x+1)/{2(1-x-x^2)^1/2}.
I=2/(5)^1/2log[(2x+1+5^1/2)/[2(1-x-x^2)^1/2]+log k
I=2/(5)^1/2.log[(2x+1+5^1/2)/(1-x-x^2)^1/2]+[logk- 2/(5)^1/2. log 2]
I=2/(5)^1/2.log[(2x+1+5^1/2)/(1-x-x^2)^1/2]+logc
Step-by-step explanation:
hope it's helpful
Similar questions