Math, asked by bmisbah162, 22 days ago

integrate 1/1+x² under limit 0 and 1​

Answers

Answered by veenasehdev3449
1

Answer:

Ok Good Question

Step-by-step explanation:

SOLUTION

TO INTEGRATE

\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }

EVALUATION

PROCESS 1 :

\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }</p><p>= \displaystyle \sf{{ \tan}^{ - 1} x \: \bigg|_0^1 }</p><p>= \displaystyle \sf{ \frac{\pi}{4} - 0}

PROCESS 2 : ( USING INDEFINITE INTERGAL )

\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }

Where C is Integration Constant

Here

= \displaystyle \sf{ \frac{\pi}{4}}</p><p>\displaystyle \sf{ \int\frac{1}{1 + {x}^{2} } \, dx }</p><p>Where C is integration constant</p><p>Hence</p><p>\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }</p><p>= \displaystyle \sf{{ \tan}^{ - 1} x + c \: \bigg|_0^1 }</p><p>= \displaystyle \sf{ \frac{\pi}{4} - 0 + 0}

Similar questions