integrate 1/(sin²x+sin2x)
Answers
Answered by
0
Let I be the integral,
I=∫1sin(x)+sin(2x)dx
Using the double-angle identity sin(2x)=2sin(x)cos(x) ,
I=∫1sin(x)(1+2cos(x))dx
Now, time for a u-substitution.
Let u=1+2cos(x)
u−12=cos(x)
du=−2sin(x)dx
∴I=−12∫1sin(x)udusin(x)
=−12∫1sin2(x)udu
Using the double-angle identity sin2(x)=1−cos2(x) and the relation u−12=cos(x)
I=−12∫1u−ucos2(x)du
=−12∫1u−u(u−12)2du
=−42∫1u(4−(u−1)2)du
=−2∫1u(4−u2−1+2u))du
=−2∫1u(3−u2+2u))du
Factoring the quadratic in the denominator,
I=−2∫1u(u+1)(−u+3)du
Similar questions