Math, asked by pk16061978, 9 months ago

Integrate (1/sinx +secx) dx ​

Answers

Answered by rderassa0001
2

Answer:

I = ∫ dx / (sinx + secx)

=  ∫ [ cosx / (cosxsinx + 1) ] dx

=  ∫ [2cosx / 2(cosxsinx + 1) ] dx

=  ∫ [ ( cosx + cosx + sinx - sinx) / (2cosxsinx + 2) ] dx

=  ∫ [ ( cosx + sinx) / (2cosxsinx + 2) ] dx +   ∫ [ ( cosx - sinx) / (2cosxsinx + 2) ] dx

= - ∫ [ (cosx + sinx)/( -3 - 2cosxsinx + cos²x + sin²x ) ] dx +   ∫ [ ( cosx - sinx) / (2cosxsinx + 1 + cos²x + sin²x ) ] dx

= - ∫ [ (cosx + sinx)/( -3 + (cosx - sinx)² ) ] dx +   ∫ [ ( cosx - sinx)/ ( 1 + ( cosx + sinx)² ) ] dx

= - ∫ [ 1 /( -3 + (sinx - cosx )² ) ] d(sinx - cosx) +   ∫ [ 1/ ( 1 + (sinx + cosx)² ) ] d(sinx + cosx)

= - ∫ [ 1/( -3 + (sinx - cosx )² ) ] d(sinx - cosx) +   ∫ [ 1/ ( 1 + (sinx + cosx)² ) ] d(sinx + cosx)

=  - ∫ [ 1/( -3 + t² ) ] dt +   ∫ [ 1/ ( 1 + u² ) ] du

=  ( 1/√3 ) ln | (t  + √3) / (t - √3) |  +  arctgu  + C

=  ( 1/√3 ) ln | (sinx - cosx + √3) / (sinx - cosx - √3) |  +  arctg(sinx + cosx)  + C

Step-by-step explanation:

Similar questions