Math, asked by hihey36051, 28 days ago

Integrate
1/(x+1)sqrt(x^2+x+1)​

Attachments:

Answers

Answered by shadowsabers03
6

Given to evaluate,

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{dx}{(x+1)\sqrt{x^2+x+1}}$}

Completing the square in x² + x + 1,

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{dx}{(x+1)\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{3}{4}}}$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{dx}{(x+1)\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt3}{2}\right)^2}}\quad\dots(1)$}

Substitute,

\small\text{$\longrightarrow x+\dfrac{1}{2}=\dfrac{\sqrt3}{2}\,\tan\theta$}

Then we get the following.

\small\text{$\longrightarrow\theta=\tan^{-1}\left(\dfrac{2x+1}{\sqrt3}\right)$}

\small\text{$\longrightarrow\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt3}{2}\right)^2}=\dfrac{\sqrt3}{2}\,\sec\theta$}

\small\text{$\longrightarrow x+1=\dfrac{\sqrt3}{2}\,\tan\theta+\dfrac{1}{2}$}

\small\text{$\longrightarrow dx=\dfrac{\sqrt3}{2}\,\sec^2\theta\,d\theta$}

Then (1) becomes,

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{\dfrac{\sqrt3}{2}\sec^2\theta\,d\theta}{\left(\dfrac{\sqrt3}{2}\tan\theta+\dfrac{1}{2}\right)\dfrac{\sqrt3}{2}\sec\theta}$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{\sec\theta\,d\theta}{\dfrac{\sqrt3}{2}\tan\theta+\dfrac{1}{2}}$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{d\theta}{\cos\theta\left(\dfrac{\sqrt3}{2}\tan\theta+\dfrac{1}{2}\right)}$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{d\theta}{\dfrac{\sqrt3}{2}\sin\theta+\dfrac{1}{2}\cos\theta}$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{d\theta}{\sin\theta\cos\left(\dfrac{\pi}{6}\right)+\cos\theta\sin\left(\dfrac{\pi}{6}\right)}$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{d\theta}{\sin\left(\theta+\dfrac{\pi}{6}\right)}$}

\small\text{$\displaystyle\longrightarrow I=\int\csc\left(\theta+\dfrac{\pi}{6}\right)\,d\theta$}

\small\text{$\displaystyle\longrightarrow I=\log\left|\csc\left(\theta+\dfrac{\pi}{6}\right)-\cot\left(\theta+\dfrac{\pi}{6}\right)\right|+C$}

\small\text{$\displaystyle\longrightarrow I=\log\left|\dfrac{1-\cos\left(\theta+\dfrac{\pi}{6}\right)}{\sin\left(\theta+\dfrac{\pi}{6}\right)}\right|+C$}

Since 1 - cos(2α) = 2sin²(α) and sin(2α) = 2sin(α)cos(α),

\small\text{$\displaystyle\longrightarrow I=\log\left|\dfrac{2\sin^2\left(\dfrac{\theta}{2}+\dfrac{\pi}{12}\right)}{2\sin\left(\dfrac{\theta}{2}+\dfrac{\pi}{12}\right)\cos\left(\dfrac{\theta}{2}+\dfrac{\pi}{12}\right)}\right|+C$}

\small\text{$\displaystyle\longrightarrow I=\log\left|\tan\left(\dfrac{\theta}{2}+\dfrac{\pi}{12}\right)\right|+C$}

Undoing substitution for θ,

\small\text{$\displaystyle\longrightarrow\underline{\underline{I=\log\left|\tan\left(\dfrac{1}{2}\tan^{-1}\left(\dfrac{2x+1}{\sqrt3}\right)+\dfrac{\pi}{12}\right)\right|+C}}$}

Similar questions