Math, asked by IndianBoy529, 11 months ago

integrate (1-x)(2+3x)(5-4x)dx​

Answers

Answered by man153
6

Step-by-step explanation:

hope it helps...............

Attachments:
Answered by Anonymous
8

Answer:

\bold\red{10x-\frac{3{x}^{2}}{2}-\frac{19 {x}^{3} }{3}  + 3 {x}^{4}  + c}

Step-by-step explanation:

Given,

\int(1 - x)(2  + 3x)(5 - 4x)dx \\  \\  =\int(10 - 3x - 19 {x}^{2}  + 12 {x}^{3} )dx \\  \\  = 10\int \: dx - 3\int \: xdx - 19\int {x}^{2} dx + 12\int {x}^{3} dx \\  \\  = 10x - 3 \times  \frac{ {x}^{2} }{2}  - 19 \times  \frac{ {x}^{3} }{3}  + 12 \times  \frac{ {x}^{4} }{4}  + c \\  \\  = 10x -  \frac{3 {x}^{2} }{2}  -  \frac{19 {x}^{3} }{3}  + 3 {x}^{4}  + c

Hence,

Value = \bold{10x-\frac{3{x}^{2}}{2}-\frac{19 {x}^{3} }{3}  + 3 {x}^{4}  + c}

Similar questions