Math, asked by Anonymous, 6 days ago

Integrate 1/x from - 1 to - 4 w.r.t.x ​

Answers

Answered by MysticSohamS
2

Answer:

your solution is in above pic

pls mark it as brainliest

Attachments:
Answered by Anonymous
16

Concept:-

Inorder to solve this problem, one must be aware about a basic formula of integration. We will use the below formula to solve the given question.

 \boxed{\sf\int \dfrac{1}{x} dx = \log(|x|) + C}

Don't forget to add the modulus for value of x :)

Note that,

 \boxed{ \begin{array}{l} \rm \dfrac{d}{dx} \log (- x) = \dfrac{1}{   - x}  \cdot - 1  = \bf \blue{ \dfrac{1}{x}}  \\   \\ \rm  \dfrac d{dx} \log(x) =  \bf \blue{\dfrac{1}{x}} \end{array}}

Solution:-

Given definite integral,

 \displaystyle \implies   \int _{ - 4}^{- 1}  \frac{1}{x} dx

Applying the formula, we get:

 \displaystyle \implies   \log( |x| )  \bigg |^{ - 1} _{ - 4}

 \displaystyle \implies   \log( | - 1| ) -  \log( | - 4|)

 \displaystyle \implies   \log(1) -  \log(4)

 \displaystyle \implies   0-  \log(4)

 \displaystyle \implies -  \log(4)

 \displaystyle \implies  \approx  - 1.3863

Hence the required answer is:

 \underline {\boxed{\int _{ - 4}^{- 1}  \frac{1}{x} dx =  -  \log(4)}}

Additional Information:-

\boxed{\begin{array}{l}  \textbf{ \textsf{Basic integration formulas: }}\\  \\ \circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{array}}

Similar questions