Math, asked by Anonymous, 8 months ago

INTEGRATE..............

Attachments:

Answers

Answered by SrijanShrivastava
4

  I=  _ { - ∞}∫^{ + ∞}  \frac{x^{2} }{ {x}^{4} + 1 } dx

 I=  \frac{1}{2}  \: _{ -∞ }∫^{ + ∞}  \frac{1 -  \frac{1}{x} }{(x +  \frac{1}{x} ) ^{2}   - 2}  dx +  \frac{1}{2}  _{ - ∞} ∫ ^{ +∞}  \frac{1 +  \frac{1}{x} }{(x -  \frac{1}{x} ) ^{2}  + 2} dx

 I=  \frac{ 1}{2 \sqrt{2} }  \tan^{ - 1} ( \frac{x  -   \frac{1}{x} }{ \sqrt{2} } ) |  _{ - ∞} ^{ +∞ }  -  \frac{1}{2 \sqrt{2} }  \tanh ^{ - 1} ( \frac{x +  \frac{1}{ x } }{\sqrt{2} } ) |  _{ - ∞} ^{ + ∞}

 I=  \frac{\pi}{ \sqrt{2} }

Answered by aloksingh17801980
0

Answer:

your answer is given in the attachment

Attachments:
Similar questions