Math, asked by prachi526379, 9 months ago

integrate 1by 1+ tanx dx​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

  \int \frac{dx}{1 +  \tan(x) }

 =   \int \frac{ \cos(x)dx }{ \sin(x)   + \cos(x) }

 =   \int \frac{( \frac{1}{2}( \cos(x)    + \sin(x) ) +  \frac{1}{2} (  \cos(x)  -  \sin(x))) dx}{ \sin(x) +  \cos(x)  }

 =  \frac{1}{2}   \int \: dx +  \frac{1}{2}   \int \frac{ \cos(x) -  \sin(x)  }{ \cos(x) +   \sin(x) } dx

Let, sin(x) + cos(x) = t => {cos(x) - sin(x)}dx = dt

 =  \frac{x}{2}  +  \frac{1}{2}   \int \frac{dt}{t}

 =  \frac{x}{2}  +  \frac{1}{2}  \:  ln(t)  + c

 =  \frac{x}{2}  +  ln( \sqrt{ \sin(x)   + \cos(x) } )  + c

Similar questions