Math, asked by diya1435, 1 year ago

integrate 2^x.dx/(1-4^x)^1/2​

Answers

Answered by Anonymous
15

\underline{\boxed{\red{Answer}}}

\rm{\blue{GIVEN\:QUESTION\;IS}}

\displaystyle\int{\Big(\frac{2^x}{\sqrt{1-4^x}}\Big)dx}

\underline{\mathbb{\EXPLINATION}}

\rm{\red{put\:\:2^x=z}}

\rm{Now\:Differentiate\:Both\:Sides\:w.r.t.x\: We\:Have}

\rm{\frac{dz}{dx}=2^x\:\log_{e}\left(2\right)}

\rm{\frac{dz}{\Big(2^x\log_{e}\left(2\right)\Big)}=dx}

\implies{\displaystyle\int{\Big(\frac{z}{\sqrt{1-z^2}}\Big)dx}}

\implies{\displaystyle\int{\Big(\frac{z}{\sqrt{1-z^2}}\times\:\frac{dz}{z\log_{e}\left(2\right)}\Big)}}

\implies{\rm{\frac{1}{\log_{e}\left(2\right)}}} \displaystyle\int{\Big(\frac{dz}{\sqrt{1-z^2}}\Big)}

\implies{\rm{\frac{1}{\log_{e}\left(2\right)}}} \rm{\left(Sin^{-1}\left(z\right)\right)+c}

\implies{\rm{\frac{Sin^{-1}\left(2^x\right)}{\log_{e}\left(2\right)}}+c}

\underline{\boxed{\pink{Where\:c\:is\:Called\:Constant\:of\:Integration}}}

Answered by silu12
5

Answer:

Hope it will help you ☺️

Attachments:
Similar questions