Math, asked by asthadwivedi551, 8 months ago

Integrate__
......................​

Attachments:

Answers

Answered by Anonymous
245

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

\huge \int\limits \frac{1}{ \sin(x)  +  \sec(x) } dx

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\pink{\implies} \int\limits \frac{1}{ \sin(x)  +  \sec(x) } dx \\ \\ \pink{\implies} \int\limits \frac{1}{ \sin(x)  + \frac{1}{ \cos(x) }  } dx \\ \\ \pink{\implies} \int\limits \frac{ \cos(x) }{1 +  \sin(x) \cos(x)  } dx

ʟɪʟʏɪɴɢ ʙʜ ɴ. ɴ ɴ. ʙʏ 2 ɢ,

\pink{\implies} \int\limits \frac{2 \cos(x) }{2 \sin(x)  \cos(x)  + 2}  \\ \\ \pink{\implies} \int\limits \frac{( \cos(x) -   \sin(x)  ) + ( \cos(x) +  \sin(x) )  }{1 + 1 + 2 \sin(x)  \cos(x) } dx \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \red{{ \sin(x) }^{2}  +  { \cos(x) }^{2} = 1 } \\ \\ \pink{\implies} \int\limits \frac{( \cos(x)  -  \sin(x)) + ( \cos(x)  +  \sin(x) ) }{1 +   {( \sin(x) +  \cos(x) ) }^{2}  }  \\ \\ \pink{\implies} \int\limits \frac{( \cos(x) -  \sin(x))  }{1 +  {( \sin(x)  +  \cos(x)) }^{2} } dx + \int\limits \frac{( \cos(x)  +  \sin(x)) }{1 +  {( \sin(x) +  \cos(x)  )}^{2} } dx \\ \\ \pink{\implies} \int\limits \frac{( \cos(x) -  \sin(x))  }{1 +  {( \sin(x)  +  \cos(x) }^{2} } dx + \int\limits \frac{( \cos(x) +  \sin(x)  )}{1 + {2 - ( { \sin(x) -  \cos(x))  }^{2}} } dx \\ \\ \pink{\implies} \int\limits  \underbrace{\bf\red{{\bigg[ \frac{( \cos(x) -  \sin(x)  )}{1 +  {( \sin(x)  +  \cos(x) )}^{2} } \bigg]}}}dx + \int\limits \underbrace{\bf\red{{\bigg[ \frac{( \cos(x) +  \sin(x))  }{3 - ( {\sin(x) -  \cos(x)}^{2}  )  } \bigg]}}}dx \\ \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \: \:    \: \: \:  \:  \:  \:  \:  \:  \:  \: \:  \: \:  \:  \:  \:  \:  \: \: I_1 \:  \:  \: \:  \: \: \:  \:  \:  \:  \:  \:  \:  \: \:  \: \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \:  \: \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:   \:  \:  \:   \: I_2

ʟ ɪɴ ɪ1

 \sin(x)  +  \cos(x)  = t \\  {\cos(x) -  \sin(x)  }dx = dt

ʟ ɪɴ ɪ2

 \sin(x)  -  \cos(x)  = v \\ { \cos(x) +  \sin(x)  }dx = dv

ɴ sʙsɪɪɴɢ, .

\pink{\implies} \int\limits \frac{dt}{1 +  {t}^{2} }  + \int\limits \frac{dv}{3 -  {v}^{2} }  \\ \\ \pink{\implies} { \tan }^{-1} t \:  +  \frac{1}{2 \sqrt{3} }  log \bigg| \frac{ \sqrt{3} - v }{ \sqrt{3}  + v} \bigg|  + C \\ \\ \green{\implies} \pink{  { \tan}^{-1}( \sin(x)   +  \cos(x) ) } \pink{+  \frac{1}{2 \sqrt{3} }} \pink{ log \bigg| \frac{ \sqrt{3} -  \sin(x)  +  \cos(x)  }{ \sqrt{3}  +  \sin(x) -  \cos(x)  } \bigg|  + C}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by TħeRøмαи
115

⋘ ─────── ∗ ⋅◈⋅ ∗ ─────── ⋙

\huge\boxed{\underline{\mathcal{\red{G} \green{i} \pink{v} \orange{e} \blue{n}}}}

</p><p>\huge \int\limits \frac{1}{ \sin(x) + \sec(x) } dx∫ </p><p>sin(x)+sec(x)</p><p>1</p><p>	</p><p> dx

══════════ ⋆★⋆ ═════════

\bf\large\underline\red{SoLUtiON}

$$\begin{lgathered}\blue{\implies} \int\limits \frac{1}{ \sin(x) + \sec(x) } dx \\ \\ \blue{\implies} \int\limits \frac{1}{ \sin(x) + \frac{1}{ \cos(x) } } dx \\ \\ \blue{\implies} \int\limits \frac{ \cos(x) }{1 + \sin(x) \cos(x) } dx\end{lgathered}$$

ᴍᴜʟᴛɪᴘʟʏɪɴɢ ʙᴏᴛʜ ɴᴜᴍ. ᴀɴᴅ ᴅᴇɴ. ʙʏ 2 ᴡᴇ ɢᴇᴛ,

$$\begin{lgathered}\blue{\implies} \int\limits \frac{2 \cos(x) }{2 \sin(x) \cos(x) + 2} \\ \\ \blue{\implies} \int\limits \frac{( \cos(x) - \sin(x) ) + ( \cos(x) + \sin(x) ) }{1 + 1 + 2 \sin(x) \cos(x) } dx \: \: \: \: \: \: \: \: \: \: \: \: \: \: \red{{ \sin(x) }^{2} + { \cos(x) }^{2} = 1 } \\ \\ \blue{\implies} \int\limits \frac{( \cos(x) - \sin(x)) + ( \cos(x) + \sin(x) ) }{1 + {( \sin(x) + \cos(x) ) }^{2} } \\ \\ \blue{\implies} \int\limits \frac{( \cos(x) - \sin(x)) }{1 + {( \sin(x) + \cos(x)) }^{2} } dx + \int\limits \frac{( \cos(x) + \sin(x)) }{1 + {( \sin(x) + \cos(x) )}^{2} } dx \\ \\ \blue{\implies} \int\limits \frac{( \cos(x) - \sin(x)) }{1 + {( \sin(x) + \cos(x) }^{2} } dx + \int\limits \frac{( \cos(x) + \sin(x) )}{1 + {2 - ( { \sin(x) - \cos(x)) }^{2}} } dx \\ \\ \blue{\implies} \int\limits \underbrace{\bf\purple{{\bigg[ \frac{( \cos(x) - \sin(x) )}{1 + {( \sin(x) + \cos(x) )}^{2} } \bigg]}}}dx + \int\limits \underbrace{\bf\purple{{\bigg[ \frac{( \cos(x) + \sin(x)) }{3 - ( {\sin(x) - \cos(x)}^{2} ) } \bigg]}}}dx \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: I_1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: I_2\end{lgathered}$$

ʟᴇᴛ ɪɴ ɪ1

❧ $$\begin{lgathered}\sin(x) + \cos(x) = t \\ {\cos(x) - \sin(x) }dx = dt\end{lgathered}$$

ʟᴇᴛ ɪɴ ɪ2

❧ $$\begin{lgathered}\sin(x) - \cos(x) = v \\ { \cos(x) + \sin(x) }dx = dv\end{lgathered}$$[/tex]

ᴏɴ sᴜʙsᴛɪᴛᴜᴛɪɴɢ, .

$$\begin{lgathered}\blue{\implies} \int\limits \frac{dt}{1 + {t}^{2} } + \int\limits \frac{dv}{3 - {v}^{2} } \\ \\ \blue{\implies} { \tan }^{-1} t \: + \frac{1}{2 \sqrt{3} } log \bigg| \frac{ \sqrt{3} - v }{ \sqrt{3} + v} \bigg| + C \\ \\ \blue{\implies} \purple{ { \tan}^{-1}( \sin(x) + \cos(x) ) } \purple{+ \frac{1}{2 \sqrt{3} }} \purple{ log \bigg| \frac{ \sqrt{3} - \sin(x) + \cos(x) }{ \sqrt{3} + \sin(x) - \cos(x) } \bigg| + C}\end{lgathered}$$

══════════ ⋆★⋆ ═════════

</p><p>\huge{\orange{\boxed{\boxed{\pink{\underline{\green{\mathscr{Hope\ it\ helps\ u}}}}}}}}

 \huge \underline \bold \red {Follow  \: me}

&lt;marquee&gt;Mark it as brainliest&lt;/marquee&gt;

 \red {Be \: Brainly}

⋘ ─────── ∗ ⋅◈⋅ ∗ ─────── ⋙

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

&lt;svg width="250" height="250" viewBox="0 0 100 100"&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;path fill="pink" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"&gt;&lt;/path&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;animateTransform \ \textless \ br /\ \textgreater \ attributeName="transform" \ \textless \ br /\ \textgreater \ type="scale" \ \textless \ br /\ \textgreater \ values="1; 1.5; 1.25; 1.5; 1.5; 1;" \ \textless \ br /\ \textgreater \ dur="2s" \ \textless \ br /\ \textgreater \ repeatCount="40"&gt; \ \textless \ br /\ \textgreater \ &lt;/animateTransform&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;/svg&gt;

Similar questions