Math, asked by shawnk, 10 months ago

integrate 2cosx/(1-sinx)(2-cos²x)​

Answers

Answered by MaheswariS
7

\underline{\textbf{Given:}}

\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}

\underline{\textbf{To find:}}

\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}

\mathsf{=\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(1+(1-cos^2x))}\,dx}

\mathsf{=\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(1+sin^2x)}\,dx}

\boxed{\mathsf{Take,\;\;t=sinx\;\implies\;\dfrac{dt}{dx}=cosx\;\implies\;dt=cosx\,dx}}

\mathsf{=\displaystyle\int\,\dfrac{2}{(1-t)(1+t^2)}\,dt}

\mathsf{This\;can\;be\;written\;as}

\mathsf{=\displaystyle\int\,\left(\dfrac{t+1}{1+t^2}+\dfrac{1}{1-t}\right)\,dt}

\mathsf{=\displaystyle\int\,\left(\dfrac{t+1}{1+t^2}+\dfrac{1}{1-t}\right)\,dt}

\mathsf{=\displaystyle\int\,\dfrac{t}{1+t^2}dt+\int\,\dfrac{1}{1+t^2}dt+\int\,\dfrac{1}{1-t}\,dt}

\mathsf{=\displaystyle\dfrac{1}{2}\int\,\dfrac{2t}{1+t^2}dt+\int\,\dfrac{1}{1+t^2}dt-\int\,\dfrac{-1}{1-t}\,dt}

\mathsf{=\dfrac{1}{2}log(1+t^2)+tan^{-1}t+log(1-t)+C}

\mathsf{=\dfrac{1}{2}log(1+sin^2x)+tan^{-1}(sinx)+log(1-sinx)+C}

\underline{\textbf{Find more:}}

Integration of {2t+3 ÷ 7t + 22} dt

https://brainly.in/question/1887939

Integral cotx/cosecx-cotx  

https://brainly.in/question/3012110#

Answered by Anonymous
3

Answer:

2cosx

dx

\underline{\textbf{To find:}}

To find:

\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}∫

(1−sinx)(2−cos

2

x)

2cosx

dx

\underline{\textbf{Solution:}}

Solution:

\mathsf{Consider,}Consider,

\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}∫

(1−sinx)(2−cos

2

x)

2cosx

dx

\mathsf{=\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(1+(1-cos^2x))}\,dx}=∫

(1−sinx)(1+(1−cos

2

x))

2cosx

dx

\mathsf{=\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(1+sin^2x)}\,dx}=∫

(1−sinx)(1+sin

2

x)

2cosx

dx

\boxed{\mathsf{Take,\;\;t=sinx\;\implies\;\dfrac{dt}{dx}=cosx\;\implies\;dt=cosx\,dx}}

Take,t=sinx⟹

dx

dt

=cosx⟹dt=cosxdx

\mathsf{=\displaystyle\int\,\dfrac{2}{(1-t)(1+t^2)}\,dt}=∫

(1−t)(1+t

2

)

2

dt

\mathsf{This\;can\;be\;written\;as}Thiscanbewrittenas

\mathsf{=\displaystyle\int\,\left(\dfrac{t+1}{1+t^2}+\dfrac{1}{1-t}\right)\,dt}=∫(

1+t

2

t+1

+

1−t

1

)dt

\mathsf{=\displaystyle\int\,\left(\dfrac{t+1}{1+t^2}+\dfrac{1}{1-t}\right)\,dt}=∫(

1+t

2

t+1

+

1−t

1

)dt

Photosynthesis is the process by which plants make their own food

Similar questions