integrate 2cosx/(1-sinx)(2-cos²x)
Answers
Integration of {2t+3 ÷ 7t + 22} dt
https://brainly.in/question/1887939
Integral cotx/cosecx-cotx
https://brainly.in/question/3012110#
Answer:
2cosx
dx
\underline{\textbf{To find:}}
To find:
\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}∫
(1−sinx)(2−cos
2
x)
2cosx
dx
\underline{\textbf{Solution:}}
Solution:
\mathsf{Consider,}Consider,
\mathsf{\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(2-cos^2x)}\,dx}∫
(1−sinx)(2−cos
2
x)
2cosx
dx
\mathsf{=\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(1+(1-cos^2x))}\,dx}=∫
(1−sinx)(1+(1−cos
2
x))
2cosx
dx
\mathsf{=\displaystyle\int\,\dfrac{2\,cosx}{(1-sinx)(1+sin^2x)}\,dx}=∫
(1−sinx)(1+sin
2
x)
2cosx
dx
\boxed{\mathsf{Take,\;\;t=sinx\;\implies\;\dfrac{dt}{dx}=cosx\;\implies\;dt=cosx\,dx}}
Take,t=sinx⟹
dx
dt
=cosx⟹dt=cosxdx
\mathsf{=\displaystyle\int\,\dfrac{2}{(1-t)(1+t^2)}\,dt}=∫
(1−t)(1+t
2
)
2
dt
\mathsf{This\;can\;be\;written\;as}Thiscanbewrittenas
\mathsf{=\displaystyle\int\,\left(\dfrac{t+1}{1+t^2}+\dfrac{1}{1-t}\right)\,dt}=∫(
1+t
2
t+1
+
1−t
1
)dt
\mathsf{=\displaystyle\int\,\left(\dfrac{t+1}{1+t^2}+\dfrac{1}{1-t}\right)\,dt}=∫(
1+t
2
t+1
+
1−t
1
)dt
Photosynthesis is the process by which plants make their own food