Math, asked by Anonymous, 10 hours ago

integrate 2cosx-3sinx/6cosx+4sinx​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

The given integral is

\displaystyle\int\rm  \frac{2cosx - 3sinx}{6cosx + 4sinx} \: dx

can be rewritten as

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm  \frac{2cosx - 3sinx}{3cosx + 2sinx} \: dx

To evaluate this integral, we use Method of Substitution.

So, Substitute

\rm \: 3cosx + 2sinx = y

\rm \: ( - 3sinx + 2cosx) \: dx \:  =  \: dy

\rm \: (2cosx - 3sinx) \: dx \:  =  \: dy

So, on substituting these values in above integral, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dy}{y}

\rm \:  =  \: \dfrac{1}{2}log |y|  + c

\rm \:  =  \: \dfrac{1}{2}log |3cosx + 2sinx|  + c

Hence,

\boxed{\tt{ \rm \: \displaystyle\int\rm  \frac{2cosx - 3sinx}{6cosx + 4sinx}dx =  \: \dfrac{1}{2}log |3cosx + 2sinx|  + c}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ \dfrac{d}{dx}sinx = cosx}} \\

\boxed{\tt{ \dfrac{d}{dx}cosx =  -  \: sinx}} \\

\boxed{\tt{ \displaystyle\int\rm  \frac{1}{x} \: dx \:  =  \: log |x|  + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by XxitzZBrainlyStarxX
9

Question:-

Integrate the Function:

 \sf  \large \frac{2cos \: x - 3sin \: x}{6cos \: x + 4sin \: x}

Given:-

 \sf  \large \frac{2cos \: x - 3sin \: x}{6cos \: x + 4sin \: x}

Solution:-

Let, 3cos x + 2sin x = t.

( 3sin x + 2cos x ) dx = dt.

 \sf \large \int \frac{2cos \: x - 3sin \: x}{6cos \: x + 4sin \: x} dx =  \int \frac{dt}{2t}

 \sf \large \frac{1}{2}  \int \frac{1}{t} dt

 \sf \large =  \frac{1}{2} log |t|  + c

 \sf \large =  \frac{1}{2} log |2sin \: x + 3cos \: x|  + c.

Answer:-

{ \boxed {{\sf  \large  \red{\frac{2cos \: x - 3sin \: x}{6cos \: x + 4sin \: x}  \sf \large =  \frac{1}{2} log |2sin \: x + 3cos \: x|  + c.}}}}

Hope you have satisfied.

Similar questions