Math, asked by rishichaurasia89, 1 month ago

integrate (2x + 1)/(9 - 4x ^ 2) dx​

Answers

Answered by ayushpalbanshi
0

Answer:

See pic attached

Please mark me brainliest if my answer helps!

Have a great day!

Attachments:
Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{I=\displaystyle\int\dfrac{2x+1}{9-4x^2}\,dx}

\tt{\implies\,I=\displaystyle \int\bigg[\dfrac{2x}{9-4x^2}+\dfrac{1}{9-4x^2}\bigg]\,dx}

\tt{\implies\,I=\displaystyle \int\dfrac{2x}{9-4x^2}\,dx+\int\dfrac{1}{9-4x^2}\,dx}

Now, let

\tt{I=I_{1}+I_{2}}

\sf{\leadsto\,\blue{SOLVING\,\,\tt{I_{1}}}}

\tt{I_{1}=\displaystyle\int\dfrac{2x}{9-4x^2}\,dx}

\tt{\green{Let\,\,9-4x^2=t}}

\tt{\green{\implies-8x\,dx=dt}}

\tt{\green{\implies2x\,dx=-\dfrac{dt}{4}}}

So,

\tt{I_{1}=\displaystyle\int\dfrac{1}{t}\cdot\,-\dfrac{dt}{4}}

\tt{\implies\,I_{1}=-\dfrac{1}{4}\displaystyle\int\dfrac{1}{t}\,dt}

\tt{\implies\,I_{1}=-\dfrac{1}{4}\cdot\,\ln|t|+c_{1}}

\boxed{\tt{\pink{\implies\,I_{1}=-\dfrac{1}{4}\,\ln|9-4x^2|+c_{1}}}}

\sf{\leadsto\,\blue{SOLVING\,\,\tt{I_{2}}}}

\tt{I_{2}=\displaystyle\int\dfrac{1}{9-4x^2}\,dx}

We know,

\sf{\green{\displaystyle\,\int\dfrac{dx}{(a)^2-(bx)^2}=\dfrac{1}{2ab}\ln\bigg|\dfrac{a+bx}{a-bx}\bigg|+c}}

So,

\tt{I_{2}=\displaystyle\int\dfrac{1}{(3)^2-(2x)^2}\,dx}

\tt{\implies\,I_{2}=\dfrac{1}{2\cdot3\cdot2}\,\,\ln\bigg|\dfrac{3+2x}{3-2x}\bigg|+c_{2}}

\boxed{\pink{\tt{\implies\,I_{2}=\dfrac{1}{12}\,\,\ln\bigg|\dfrac{3+2x}{3-2x}\bigg|+c_{2}}}}

Now, we have,

\tt{I=I_{1}+I_{2}}

\tt{\implies\,I=-\dfrac{1}{4}\,\ln|9-4x^2|+c_{1}+\dfrac{1}{12}\,\ln\bigg|\dfrac{3+2x}{3-2x}\bigg|+c_{2}}

\tt{\implies\,I=-\dfrac{1}{4}\,\ln|9-4x^2|+\dfrac{1}{12}\,\ln\bigg|\dfrac{3+2x}{3-2x}\bigg|+C\,\,\,\,\,\,\,\,,where\,\,C=c_{1}+c_{2}}

\tt{\implies\,I=-\dfrac{1}{4}\,\ln|(3-2x)(3+2x)|+\dfrac{1}{12}\,\ln\bigg|\dfrac{3+2x}{3-2x}\bigg|+C}

\tt{\implies\,I=-\dfrac{1}{4}\,\ln|3-2x|-\dfrac{1}{4}\,\ln|3+2x|+\dfrac{1}{12}\,\ln|3+2x|-\dfrac{1}{12}\,\ln|3-2x|+C}

\tt{\implies\,I=-\bigg(\dfrac{1}{4}+\dfrac{1}{12}\bigg)\,\ln|3-2x|+\bigg(\dfrac{1}{12}-\dfrac{1}{4}\bigg)\,\ln|3+2x|+C}

\tt{\implies\,I=-\bigg(\dfrac{3+1}{12}\bigg)\,\ln|3-2x|+\bigg(\dfrac{1-3}{12}\bigg)\,\ln|3+2x|+C}

\tt{\implies\,I=-\bigg(\dfrac{4}{12}\bigg)\,\ln|3-2x|+\bigg(\dfrac{-2}{12}\bigg)\,\ln|3+2x|+C}

\purple{\boxed{\tt{\implies\,I=-\dfrac{1}{3}\,\ln|3-2x|-\dfrac{1}{6}\,\ln|3+2x|+C}}}

Similar questions