Math, asked by THESPARTA, 30 days ago

integrate (3x^13+2x^11)/((2x^4+3x^2+1)^4)​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \frac{3 {x}^{13} + 2 {x}^{11}  }{(2 {x}^{4} + 3 {x}^{2}   + 1)^{4} } dx \\

 =  \int \frac{3 {x}^{13} + 2 {x}^{11}  }{( {x}^{4} (2 + 3 {x}^{ - 2}   +  {x}^{ - 4} ))^{4} } dx \\

 =  \int \frac{3 {x}^{13} + 2 {x}^{11}  }{ {x}^{16} (2 + 3 {x}^{ - 2}   +  {x}^{ - 4} )^{4} } dx \\

 =  \int \frac{ {x}^{16}( 3 {x}^{ - 3} + 2 {x}^{ - 5})  }{ {x}^{16} (2 + 3 {x}^{ - 2}   +  {x}^{ - 4} )^{4} } dx \\

 =  \int \frac {( 3 {x}^{ - 3} + 2 {x}^{ - 5})  }{ (2 + 3 {x}^{ - 2}   +  {x}^{ - 4} )^{4} } dx \\

Let \: 2 + 3 {x}^{ - 2}  +  {x}^{ - 4}  = y \\  \implies - 6 {x}^{ - 3}  - 4 {x}^{ - 5} dx = dy \\  \implies - 2(3 {x}^{ - 3}  + 2 {x}^{ - 5} )dx = dy

Now,

 =    - \frac{1}{2} \int  \frac { - 2( 3 {x}^{ - 3} + 2 {x}^{ - 5})  }{ (2 + 3 {x}^{ - 2}   +  {x}^{ - 4} )^{4} } dx \\

 =    - \frac{1}{2} \int  \frac {dy  }{ (y )^{4} }  \\

 =    - \frac{1}{2} \int  {y}^{ - 4} dy   \\

 =    - \frac{1}{2} \frac{  {y}^{ - 3}}{ - 3}  +  C\\

 =     \frac{1}{6}  {y}^{ - 3} +  C\\

 =     \frac{1}{6}  {(2 + 3 {x}^{ - 2} +  {x}^{ - 4} ) }^{ - 3} +  C\\

 =     \frac{x^{12}}{6(2x^{4}+3x^{2}+1)^{3}}+ C\\

Similar questions