integrate 3x^2+1/(x^2-1)^3
Answers
EXPLANATION.
As we know that,
We can write this equation as,
As we know that,
Formula of :
⇒ (x² - y²) = (x + y)(x - y).
Using this formula in equation, we get.
As we know that,
Expand the equation of (x + 1)³ and (x - 1)³, we get.
⇒ (x + 1)³ = x³ + 3x² + 3x + 1.
⇒ (x - 1)³ = x³ - 3x² + 3x - 1.
Now we add both equation, we get.
⇒ (x + 1)³ + (x - 1)³ = x³ + 3x² + 3x + 1 + x³ - 3x² + 3x - 1.
⇒ (x + 1)³ + (x - 1)³ = 2x³ + 6x.
This equation is not satisfying.
Now we subtract the equation, we get.
⇒ (x + 1)³ - (x - 1)³ = x³ + 3x² + 3x + 1 - [x³ - 3x² + 3x - 1].
⇒ (x + 1)³ - (x - 1)³ = x³ + 3x² + 3x + 1 - x³ + 3x² - 3x + 1.
⇒ (x + 1)³ - (x - 1)³ = 6x² + 2.
⇒ (x + 1)³ - (x - 1)³ = 2(3x² + 1).
As we can see that,
Multiply and divide numerator and denominator by 2, we get.
As we know that,
Formula of :
⇒ ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ - 1).
Using this formula in equation, we get.
MORE INFORMATION.
Standard integrals.
(1) = ∫0.dx = c.
(2) = ∫1.dx = x + c.
(3) = ∫k dx = kx + c, ( k ∈ R).
(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, ( n ≠ - 1).
(5) = ∫dx/x = ㏒(x) + c.
(6) = ∫eˣdx = eˣ + c.
(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.
As we know that,
We can write this equation as,
As we know that,
Formula of :
⇒ (x² - y²) = (x + y)(x - y).
Using this formula in equation, we get.
As we know that,
Expand the equation of (x + 1)³ and (x - 1)³, we get.
⇒ (x + 1)³ = x³ + 3x² + 3x + 1.
⇒ (x - 1)³ = x³ - 3x² + 3x - 1.
Now we add both equation, we get.
⇒ (x + 1)³ + (x - 1)³ = x³ + 3x² + 3x + 1 + x³ - 3x² + 3x - 1.
⇒ (x + 1)³ + (x - 1)³ = 2x³ + 6x.
This equation is not satisfying.
Now we subtract the equation, we get.
⇒ (x + 1)³ - (x - 1)³ = x³ + 3x² + 3x + 1 - [x³ - 3x² + 3x - 1].
⇒ (x + 1)³ - (x - 1)³ = x³ + 3x² + 3x + 1 - x³ + 3x² - 3x + 1.
⇒ (x + 1)³ - (x - 1)³ = 6x² + 2.
⇒ (x + 1)³ - (x - 1)³ = 2(3x² + 1).
As we can see that,
Multiply and divide numerator and denominator by 2, we get.
As we know that,
Formula of :
⇒ ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ - 1).
Using this formula in equation, we get.
_______________________________________________________________