Math, asked by 9avj9, 6 months ago

integrate (3x^3-2√x)/x dx​

Answers

Answered by Asterinn
6

 \implies\displaystyle \int \dfrac{3 {x}^{3}  - 2 \sqrt{x} }{x}dx

 \implies\displaystyle \int \dfrac{3 {x}^{3}   }{x}dx  -  \displaystyle \int\frac{2 \sqrt{x}}{x} dx

\implies\displaystyle \int \dfrac{3 {x}^{2}   }{1}dx  -  \displaystyle \int\frac{2 {x}^{ \frac{1}{2} } }{x} dx

\implies\displaystyle \int \dfrac{3 {x}^{2}   }{1}dx  -  \displaystyle \int\frac{2 {x}^{ \frac{1}{2}  - 1} }{1} dx

\implies\displaystyle \int \dfrac{3 {x}^{2}   }{1}dx  -  \displaystyle \int\frac{2 {x}^{ \frac{ - 1}{2}  } }{1} dx

\implies\displaystyle  \dfrac{3 {x}^{3}   }{3}  -  \displaystyle  \frac{{4 {x}^{ \frac{ 1}{2}  } }{} }{1}  + c

\implies\displaystyle  \dfrac{ {x}^{3}   }{1}  -  \displaystyle  \frac{{4 {x}^{ \frac{ 1}{2}  } }{} }{1}  + c

\implies\displaystyle   {x}^{3}     -  \displaystyle  {{4 {x}^{ \frac{ 1}{2}  } }{} }  + c

Answer :

\implies\displaystyle   {x}^{3}     -  \displaystyle  {{4 {x}^{ \frac{ 1}{2}  } }{} }  + c

______________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

_____________________

Similar questions