Math, asked by harishrajs0808, 2 months ago

Integrate : (3x+4) √3x+7 dx​

Answers

Answered by rishu6845
2

Step-by-step explanation:

  \displaystyle{\int {(3x + 4) \sqrt{(3x + 7)} dx}} \\ let \:  \\ 3x + 7 = t \\ 3x = t - 7 \\ x =  \dfrac{1}{3} (t - 7) \\ dx =  \dfrac{1}{3} (dt - 0) \\ dx =  \dfrac{1}{3} dt \\ now \\  \displaystyle \int(t - 7 + 4) \:  \sqrt{t}  \:  \:  \frac{dt}{3}  \\  =   \dfrac{1}{3} \displaystyle \int  (t - 3)  \:  \: {t}^{ \frac{1}{2} }  \: dt \\  =  \dfrac{1}{3}  \displaystyle \int( {t}^{ \frac{3}{2} }  - 3 {t}^{ \frac{1}{2} } )dt \\  =  \dfrac{1}{3}  ( \:  \dfrac{ {t}^{ \frac{3}{2}  + 1} }{ \frac{3}{2}  + 1}  - 3 \dfrac{ {t}^{ \frac{1}{2}  + 1} }{ \frac{1}{2}  + 1} ) + c \\  =  \dfrac{1}{3} ( \:  \frac{ {t}^{ \frac{5}{2} } }{ \frac{5}{2} }  - 3 \dfrac{ {t}^{ \frac{3}{2} } }{ \frac{3}{2} } ) + c \\  =  \dfrac{2}{15}  {t}^{ \frac{5}{2} }  -  \dfrac{2}{3}  {t}^{ \frac{3}{2} }  + c

Similar questions