Math, asked by rishichaurasia89, 1 month ago

integrate (3x + 4)/(x ^ 2 + 6x + 5) dx​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\rm  \frac{3x + 4}{ {x}^{2} + 6x + 5} \: dx

Let assume that

\rm :\longmapsto\:I = \displaystyle\int\rm  \frac{3x + 4}{ {x}^{2} + 6x + 5} \: dx

can be rewritten as

\rm \:  =  \:\displaystyle\int\rm  \frac{3x + 4}{ {x}^{2} + 5x + x + 5 } \: dx

\rm \:  =  \:\displaystyle\int\rm  \frac{3x + 4}{ x(x + 5) + 1(x + 5) } \: dx

\rm \:  =  \:\displaystyle\int\rm  \frac{3x + 4}{(x + 5)(x + 1)} \: dx

Now using Partial Fraction, we have

\rm :\longmapsto\:\dfrac{3x + 4}{(x + 5)(x + 1)}  = \dfrac{a}{(x + 5)}  + \dfrac{b}{(x + 1)}  -  -  (1)

On taking LCM, we get

\rm :\longmapsto\:3x + 4 = a(x + 1) + b(x + 5)

On substituting x = - 5, we get

\rm :\longmapsto\:3( - 5) + 4 = a( - 5 + 1) + b( - 5 + 5)

\rm :\longmapsto\: - 15 + 4 = - 4 a

\rm :\longmapsto\: - 11 = - 4 a

\rm \implies\:\boxed{ \tt{ \: a =  \frac{11}{4} \: }}

On substituting x = - 1, we get

\rm :\longmapsto\:3( - 1) + 4 = a( - 1 + 1) + b( - 1 + 5)

\rm :\longmapsto\: - 3 + 4 =  4b

\rm :\longmapsto\: 1=  4b

\rm \implies\:\boxed{ \tt{ \: b \:  =  \:  \frac{1}{4}  \: }}

On substituting the values of a and b, in equation (1), we get

\rm :\longmapsto\:\dfrac{3x + 4}{(x + 5)(x + 1)}  = \dfrac{11}{4(x + 5)}  + \dfrac{1}{4(x + 1)}

On integrating both sides w. r. t. x, we get

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{3x + 4}{(x + 5)(x + 1)}dx =\displaystyle\int\rm  \dfrac{11}{4(x + 5)}dx + \displaystyle\int\rm \dfrac{1}{4(x + 1)}dx

We know,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{1}{x} \: dx = logx + c \: }}

So, using this, we get

\rm :\longmapsto\:\displaystyle\int\rm  \frac{3x + 4}{(x + 5)(x + 1)}dx =  \frac{11}{4}log |x + 5| +  \frac{1}{4}log |x + 1| + c

Hence,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{3x + 4}{ {x}^{2} + 6x + 5}dx =  \frac{11}{4}log |x + 5| +  \frac{1}{4}log |x + 1| + c \: }}

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by guptaananya2005
0

Answer:

 \\ </p><p>\boxed{ \tt{ \: \displaystyle\int\rm \frac{3x + 4}{ {x}^{2} + 6x + 5}dx = \frac{11}{4}log |x + 5| + \frac{1}{4}log |x + 1| + c \: }} \\  \\ </p><p></p><p>

Step-by-step explanation:

Hope it helps you

Similar questions