Physics, asked by DevarshiJoshi, 1 year ago

integrate 6cos t/(2+sin t)^3 dt


DevarshiJoshi: lukkhe loveday

Answers

Answered by MaheswariS
20

Answer:

\int{\frac{6\:cost}{(2+sint)^3}}\:dt=\frac{-3}{(2+sint)^2}+C

Explanation:

Formula:

\int{x^n}\:dx=\frac{x^{n+1}}{n+1}+c

I have applied change of variable method to solve this integral.

Let

I=\int{\frac{6\:cost}{(2+sint)^3}}\:dt

Take,

x=2+sint

\frac{dx}{dt}=cost

dx=cost\:dt

Now,

I=6\int{\frac{1}{x^3}}\:dx

I=6\int{x^{-3}}\:dx

I=6(\frac{x^{-2}}{-2})+C

I=-3x^{-2}+C

I=\frac{-3}{x^2}+C

I=\frac{-3}{(2+sint)^2}+C


DevarshiJoshi: thanks sir
MaheswariS: ok
DevarshiJoshi: thanks
Similar questions