Math, asked by harinikisty, 1 year ago

Integrate 6x+7/root(x-5)(x-4)

Answers

Answered by Μοιρασιά
19
Heya user,☺️
Μοιρασιά (Official account for sharing answers) is here to help you
Solution is given in the attachment.

You may ask in the comment box if any doubt arises.

Credited to ==>(Singularity) brainly.in/profile/purvaparmar1405-48021.

Hope it helps!
Attachments:
Answered by hukam0685
5

Answer:

\int \frac{6x + 7}{ \sqrt{(x - 5)(x - 4)} } dx = \\  \\  6\sqrt{{x}^{2}  - 9x + 20} +34  log( | x-\frac{9}{2}+\sqrt{(x-5)(x-4))} | ) + C \\  \\

Step-by-step explanation:

For such type of integration follow the process shown below

 \int \frac{6x + 7}{ \sqrt{(x - 5)(x - 4)} } dx \\  \\   \int \frac{6x + 7}{ \sqrt{ {x}^{2} - 9x + 20 } } dx \\  \\ \\ let \\  \\ 6x + 7 = A \frac{d( {x}^{2}  - 9x + 20)}{dx}  + B \\  \\ 6x + 7 = A(2x - 9) + B\\  \\ 6x + 7 = 2Ax - 9A + B \\  \\

compare the coefficients

2A = 6 \\  \\ A= 3 \\  \\  - 9A+ B = 7 \\  \\  - 27 + B = 7 \\  \\ B = 34 \\  \\

\int \frac{6x + 7}{ \sqrt{ {x}^{2} - 9x + 20 } } dx  =  \int \frac{3(2x - 9) + 34}{ \sqrt{ {x}^{2}  - 9x + 20 } } \\  \\  =  3\int \frac{2x - 9}{ \sqrt{ {x}^{2}  - 9x + 20} }dx  +  \int \frac{34}{\sqrt{ {x}^{2}  - 9x + 20}} dx \\  \\

Now let

 {x}^{2}  - 9x + 20 = t \\  \\( 2x - 9)dx = dt \\  \\

So

  \int \frac{3(2x - 9) }{ \sqrt{ {x}^{2}  - 9x + 20 } } = 3\int \frac{dt}{ \sqrt{t} }  \\  \\ =   6\sqrt{t}+ C \\  \\  = 6\sqrt{{x}^{2}  - 9x + 20}+ C  \\  \\

Now convert denominator into complete square method

 {x}^{2}  - 2x( \frac{9}{2} ) +  \frac{81}{4}  + 20 -  \frac{81}{4}  \\  \\ ( {x -  \frac{9}{2} )}^{2}  -  {( \frac{1}{2} )}^{2}  \\  \\

Integration of

 \int \frac{1}{ \sqrt{ {x}^{2} -  {a}^{2}  } } dx =  log( | x+\sqrt{(x^2-a^2)} | )  + C \\  \\

So for

\int \frac{34}{\sqrt{ {x}^{2}  - 9x + 20}} dx \\  \\   34 \int \frac{1}{ \sqrt{ {(x -  \frac{9}{2} )}^{2}  -   { (\frac{1}{2} )}^{2}  } } dx = 34  \:   log( | x-\frac{9}{2}-\sqrt{(x^2-9x+20)} | ) + c \\  \\ =  34  \:   log( | x-\frac{9}{2}+\sqrt{(x-5)(x-4))} | ) + C \\  \\  \:

So

\int \frac{6x + 7}{ \sqrt{(x - 5)(x - 4)} } dx = 6\sqrt{{x}^{2}  - 9x + 20} +34  \:   log( | x-\frac{9}{2}+\sqrt{(x-5)(x-4))} | ) + C\\  \\

Hope it helps you.

Similar questions