Math, asked by alhata64, 8 months ago

integrate 6x² – 2x+3 dx​

Answers

Answered by amitkumar44481
55

AnsWer :

2x³ - x² + 3x + c.

SolutioN :

Let's Integrate w.r.t.x

 \longmapsto  \tt\:  \:  \int\Big(6 {x}^{2}  - 2x + 3 \Big) \,dx   \\

• By Sum Rules,

 \longmapsto  \tt\:  \:  \int6 {x}^{2}\,dx  - \int 2x\,dx + \int 3\,dx\\

• Taking Constant terms.

 \longmapsto  \tt\:  \: 6 \int {x}^{2}\,dx  -2 \int x\,dx + 3\int \,dx\\

 \longmapsto  \tt\:  \: 6 . \frac{ {x}^{3} }{3}   -2 . \frac{ {x}^{2} }{2}  + 3x + c\\

 \longmapsto  \tt\:  \:  \cancel6 . \frac{ {x}^{3} }{ \cancel3}   - \cancel2 . \frac{ {x}^{2} }{ \cancel2}  + 3x + c\\

 \longmapsto  \tt\:  \: 2 {x}^{3} -  {x}^{2}  + 3x + c.\\

Therefore, the value of integration of 6x² – 2x + 3 with respect to x is 2x³ - x² + 3x + c.

__________________________

MorE InformatioN :

 \tt \bullet \:  \:  \:  \:  \:\int {a}^{n}\,da =  \dfrac{ {a}^{n + 1} }{n + 1}  + c. \\

 \tt \bullet \:  \:  \:  \:  \:\int  \frac{1}{a} \,da = log\,a  + c.\\

 \tt \bullet \:  \:  \:  \:  \:\int 1 \,da = a + c. \\

Answered by Anonymous
10

Question :

Integrate 6x² – 2x+3 dx​

Answer :

\bf{2x^3-x^2+3x+C}

Explanation :

\bf{\int \:6x^2-2x+3dx=2x^3-x^2+3x+C}

                                                                         

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=\int \:6x^2dx-\int \:2xdx+\int \:3dx

                                               

\int \:6x^2dx=2x^3

           

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=6\cdot \int \:x^2dx

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1

=6\cdot \frac{x^{2+1}}{2+1}

                                               

\int \:2xdx=x^2

           

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=2\cdot \int \:xdx

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1

=2\cdot \frac{x^{1+1}}{1+1}

                                         

\int \:3dx=3x

           

\mathrm{Integral\:of\:a\:constant}:\quad \int adx=ax

=3x

                                               

\bf{=2x^3-x^2+3x}

\mathrm{Add\:a\:constant\:to\:the\:solution}

\bf{=2x^3-x^2+3x+C}

                                                                         

Regards :)

Similar questions