Math, asked by priyanshijain69, 3 months ago

integrate (7x+8)^5/2 dx
(that 5/2 is in power)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

 \displaystyle \: \rm :\longmapsto\: \int {\bigg(7x + 8 \bigg) }^{\dfrac{5}{2} } dx

Here we use method of Substitution.

\rm :\longmapsto\:Put \: 7x + 8 = y

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}(7x + 8) = \dfrac{d}{dx}y

\rm :\longmapsto\:\dfrac{d}{dx}7x + \dfrac{d}{dx}8 = \dfrac{dy}{dx}

\rm :\longmapsto\:7 = \dfrac{dy}{dx}

\rm :\longmapsto\:dx = \dfrac{dy}{7}

Thus,

The given integral can be rewritten as,

 \displaystyle \: \rm :\longmapsto\: \int {\bigg(7x + 8 \bigg) }^{\dfrac{5}{2} } dx

 \displaystyle \: \rm \:  =  \:  \:  \int \:  {\bigg( y\bigg) }^{\dfrac{5}{2} } \dfrac{dy}{7}

 \displaystyle \: \rm \:  =  \:  \:\dfrac{1}{7}  \int \:  {\bigg( y\bigg) }^{\dfrac{5}{2} }dy

\rm \:  =  \:  \: \dfrac{1}{7}\dfrac{ {\bigg( y\bigg) }^{\dfrac{5}{2} + 1 } }{\dfrac{5}{2} + 1 } + c

\green{\boxed{  \because \: \bf \:  \int {x}^{n}dx \:  =  \: \dfrac{ {x}^{n + 1} }{n + 1} + c}}

\rm \:  =  \:  \: \dfrac{1}{7}\dfrac{ {\bigg( y\bigg) }^{\dfrac{5 + 2}{2}} }{\dfrac{5 + 2}{2}} + c

\rm \:  =  \:  \: \dfrac{1}{7}\dfrac{ {\bigg( y\bigg) }^{\dfrac{7}{2}} }{\dfrac{7}{2}}  + c

\rm \:  =  \:  \: \dfrac{2}{49}  {\bigg( 7x + 8\bigg) }^{\dfrac{7}{2} }  + c

Additional Information :-

\green{\boxed{ \bf \:  \int \: kdx = kx+ c}}

\green{\boxed{ \bf \:  \int \: sinx \: dx =  - cosx+ c}}

\green{\boxed{ \bf \:  \int \: cosx \: dx =  sinx+ c}}

\green{\boxed{ \bf \:  \int  \:  {e}^{x} \: dx = {e}^{x}  + c}}

\green{\boxed{ \bf \:  \int \: \dfrac{1}{x} dx =  log(x) + c}}

\green{\boxed{ \bf \:  \int \:secx \: tanx dx = secx+ c}}

\green{\boxed{ \bf \:  \int \:cosecx \: cotx dx =  -  \: cosecx+ c}}

\green{\boxed{ \bf \:  \int \: cotx \: dx  \:  = \:  log(sinx) + c}}

\green{\boxed{ \bf \:  \int \: tanx \: dx  \:  = \:  log(secx) + c}}

\green{\boxed{ \bf \:  \int \: secx \: dx  \:  = \:  log(secx + tanx) + c}}

Similar questions