Integrate (a) 1/cos x (b) 1/sinx (c) 1 / 1 + cos x
Answers
Answered by
2
a) ln(1/cosx + tanx) + c
b) ln | 1/tan(x/2) | +c
c)( 1/sinx ) - cotx +c
b) ln | 1/tan(x/2) | +c
c)( 1/sinx ) - cotx +c
Anonymous:
thanx
Answered by
2
(1) integration of 1/cosx
dx/cosx = secx.dx
this is fit for basic integration formula,
= ln | secx + tanx | + C
=ln | 1/cosx + sinx/cosx | + C
=ln | 1 + sinx | - ln | cosx | + C
(2) Integration of 1/sinx
dx/sinx = cosecx.dx
=ln|cosecx - cotx | + C
= ln | 1 - cosx | - ln | sinx | + C
= ln | 2sin²x/2 | -ln | 2sinx/2.cosx/2 | + C
=ln | tanx/2 | + C
(3) 1/( 1 + cosx )
= dx/( 1 + cosx )
= dx/(2cos²x/2 )
=1/2 { sec²x/2 } dx
= tanx/2 + C
dx/cosx = secx.dx
this is fit for basic integration formula,
= ln | secx + tanx | + C
=ln | 1/cosx + sinx/cosx | + C
=ln | 1 + sinx | - ln | cosx | + C
(2) Integration of 1/sinx
dx/sinx = cosecx.dx
=ln|cosecx - cotx | + C
= ln | 1 - cosx | - ln | sinx | + C
= ln | 2sin²x/2 | -ln | 2sinx/2.cosx/2 | + C
=ln | tanx/2 | + C
(3) 1/( 1 + cosx )
= dx/( 1 + cosx )
= dx/(2cos²x/2 )
=1/2 { sec²x/2 } dx
= tanx/2 + C
Similar questions