Math, asked by itgo14, 5 months ago

Integrate by parts:-
x {(logx)}^{2}

Answers

Answered by Anonymous
183

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}Integrate by parts:-

x {(logx)}^{2}

\huge\tt{\boxed{\overbrace{\underbrace{\blue{Answer</p><p> }}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

Given:-

x {(logx)}^{2}

Here ,this identity is used :-

\bold{\boxed{∫(1 \times 2)dx = 1∫2dx - ∫(\frac{d(1)}{dx}  \times ∫2dx)dx}}

⟹\bold{∫x( {logx)}^{2} dx = ∫ {(logx)}^{2} x \times dx}

⟹ \bold{{(logx)}^{2} ∫xdx - ∫ \frac{d(logx)}{dx} ∫x \times dx}

 ⟹\bold{\frac{ {x}^{2} }{2}  {(logx)}^{2}  - 2  ∫ \frac{logx}{x}  \times   \frac{ {x}^{2} }{2} dx}

⟹ \bold{\frac{ {x}^{2} }{2}  {(logx)}^{2}  - ∫xlogxdx......(i)}

\bold{\red{ɪ1=∫xlogxdx</p><p>∫xlogxdx=∫(logx)xdx}}

⟹\bold{logx∫xdx - ∫( \frac{d(logx)}{dx} ∫xdx)dx}

⟹\bold{logx( \frac{ {x}^{2} }{2} ) - ∫ \frac{1}{x}  \times  \frac{ {x}^{2} }{2} dx}

⟹\bold{ \frac{ {x}^{2} }{2} logx -  \frac{1}{2} ∫xdx}

⟹ \bold{\frac{ {x}^{2} }{2} logx -  \frac{1}{2}  \frac{ {x}^{2} }{2}  + c}

⟹\bold{ \frac{ {x}^{2} }{2} logx -  \frac{ {x}^{2} }{4}  + c}

\mathbb{\bold{Now,\:put\: the \:value \:of \:ɪ 1}}

⟹\bold{∫x {(logx)}^{2} dx =  \frac{ {x}^{2} }{2}  {(logx)}^{2}  - ∫x \times logxdx}

⟹\bold{ \frac{ {x}^{2} }{2}  {(logx)}^{2}   -  (\frac{ {x}^{2} (logx)}{2}  -   \frac{ {x}^{2} }{4}  + c)}

⟹ \bold{\frac{ {x}^{2} }{2}  {(logx)}^{2}  -  \frac{ {x}^{2} (logx)}{2}  +  \frac{ {x}^{2} }{4}  - c}

 \bold{⟹\frac{ {x}^{2} }{2}  {(logx)}^{2}  -  \frac{ {x}^{2} (logx)}{2}  +   \frac{ {x}^{2} }{4}  + c}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
2

According to the question

Here , \: this  \: identity \:  \:  is \:  used :- \\  \\ </p><p></p><p>\bold{\boxed{∫(1 \times 2)dx = 1∫2dx - ∫(\frac{d(1)}{dx} \times ∫2dx)dx}} \\  \\ </p><p></p><p>⟹\bold{∫x( {logx)}^{2} dx = ∫ {(logx)}^{2} x \times dx} \\  \\ </p><p></p><p>⟹ \bold{{(logx)}^{2} ∫xdx - ∫ \frac{d(logx)}{dx} ∫x \times dx} \\  \\ </p><p></p><p>⟹\bold{\frac{ {x}^{2} }{2} {(logx)}^{2} - 2 ∫ \frac{logx}{x} \times \frac{ {x}^{2} }{2} dx} \\  \\ </p><p></p><p>⟹ \bold{\frac{ {x}^{2} }{2} {(logx)}^{2} - ∫xlogxdx......(i)} \\  \\ </p><p></p><p>\bold{\red{ɪ1=∫xlogxdx ∫xlogxdx=∫(logx)xdx}} \\  \\ </p><p></p><p>⟹\bold{logx∫xdx - ∫( \frac{d(logx)}{dx} ∫xdx)dx} \\  \\ </p><p></p><p>⟹\bold{logx( \frac{ {x}^{2} }{2} ) - ∫ \frac{1}{x} \times \frac{ {x}^{2} }{2} dx} \\  \\ </p><p></p><p>⟹\bold{ \frac{ {x}^{2} }{2} logx - \frac{1}{2} ∫xdx} \\  \\ </p><p></p><p>⟹ \bold{\frac{ {x}^{2} }{2} logx - \frac{1}{2} \frac{ {x}^{2} }{2} + c} \\  \\ </p><p></p><p>⟹\bold{ \frac{ {x}^{2} }{2} logx - \frac{ {x}^{2} }{4} + c} \\  \\ </p><p></p><p>\mathbb{\bold{Now,\:put\: the \:value \:of \:ɪ 1}} \\  \\ </p><p></p><p>⟹\bold{∫x {(logx)}^{2} dx = \frac{ {x}^{2} }{2} {(logx)}^{2} - ∫x \times logxdx} \\  \\ </p><p></p><p>⟹\bold{ \frac{ {x}^{2} }{2} {(logx)}^{2} - (\frac{ {x}^{2} (logx)}{2} - \frac{ {x}^{2} }{4} + c)} \\  \\ </p><p></p><p>⟹ \bold{\frac{ {x}^{2} }{2} {(logx)}^{2} - \frac{ {x}^{2} (logx)}{2} + \frac{ {x}^{2} }{4} - c} \\  \\ </p><p></p><p>\bold{⟹\frac{ {x}^{2} }{2} {(logx)}^{2} - \frac{ {x}^{2} (logx)}{2} + \frac{ {x}^{2} }{4} + c} \\  \\ </p><p></p><p>

Similar questions