Math, asked by umairlucknow9pdt8sc, 1 year ago

integrate by substitution easily

Attachments:

Answers

Answered by rohitkumargupta
8
HELLO DEAR,

GIVEN:-
∫sinx/(sinx - cosx) . dx

⇒1/2* ∫2sinx/(sinx - cosx).dx

⇒1/2 * ∫\bold{\frac{(sinx + cosx) + (sinx - cosx)}{(sinx - cosx)}\,dx}

⇒1/2 * [\bold{\int{\frac{cosx + sinx}{sinx - cosx}}\,dx + \int{\frac{sinx - cosx}{sinx - cosx}}\,dx}]

let t = sinx - cosx
⇒dt = dx.(cosx + sinx)

So , ⇒1/2[dt/t + 1dx]

⇒1/2 * (log|t| + x) + c

⇒ 1/2 * log|sinx - cosx| + 1/2x + c

I HOPE ITS HELP YOU DEAR,
THANKS

rohitkumargupta: see next step
umairlucknow9pdt8sc: this will also cancel the cos
umairlucknow9pdt8sc: seen
rohitkumargupta: you can write this alsp
rohitkumargupta: *also
rohitkumargupta: actually i was trying to Solve
umairlucknow9pdt8sc: by writing this the question is not solving
rohitkumargupta: ok i am writing this
umairlucknow9pdt8sc: ok
umairlucknow9pdt8sc: solve by taking what i took
Answered by diwanamrmznu
4

SOLUTION:-

 \implies \int \:  \frac{ \sin(x) }{( \sin(x)  -  \cos(x) } dx \\

multiplie and divide 1/2

 \implies  \frac{1}{2}  \int \:  \frac{2 \sin(x) }{( \sin(x) -  \cos(x) ) }  \\  \\

can we be written as

 \implies \:  \frac{1}{2 }  \int \:   \frac{ \sin \: x+  \sin\: x  }{( \sin x  -  \cos \: x ) }  \\

add and subscrate cos x

 \implies \:  \frac{1}{2}  \int \:  \frac{ (\sin \: x +  \cos \: x) + ( \sin \: x -  \cos \: x)}{( \sin \: x -  \cos \: x) }  \\

can be written as

 \implies \:  \frac{1}{2}  \int \:  \frac{ \sin \: x +  \cos \: x  }{ \sin \: x -  \cos \: x  } +  \frac{1}{2}  \int \cancel{ \frac{ \sin \: x  -   \cos \: x }{ \sin x -   \cos \: x } }  \\

let   \frac{1}{2} \int \:  \frac{ \sin(x)  + \cos(x)  }{ \sin(x)  -  \cos(x) }  =  i_{}   \\

and

 \implies  \frac{1}{2}  \int \: 1 \: dx = ii

solve I

let sin x -cos x=t----(1)

 \implies \:  \frac{d}{dx}  \sin(x)  -  \frac{d}{dx}  \cos(x)  =  dt \\  \\  \implies \:  \cos(x)  - ( -  \sin(x) ) = dt \\  \\  \implies \:  \cos(x)  +  \sin(x)  = dt

put value I

 \implies \:  \frac{1}{2}  \int \:  \frac{1}{t} dt \\  \\  \implies \:  \frac{1}{2}  log \: t \\  \\

put t value

 \implies \:  \frac{1}{2}  log \:  | \cos(x)  -  \sin(x) |

solve ii

 \implies \:  \frac{1}{2} x \\

add I +ii

 \implies \:  \frac{1}{2}  \:  log( | \cos(x) -  \sin(x)  | )  +  \frac{1}{2} x \\ +c

____________________________

I hope it helps you

Similar questions