Math, asked by Raunit04, 2 months ago

Integrate. [Cos^-1x (√1-x^2)]^-1 / Log{1+(sin(2x√1-x^2)/π}​

Answers

Answered by pulakmath007
23

SOLUTION

TO EVALUATE

\displaystyle \sf{ \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }

EVALUATION

Let I be the given Integral

Then

\displaystyle \sf{I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }

Let x = sin θ

then dx = cos θ dθ

Then the given Integral becomes

\displaystyle \sf{I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}( \sin \theta)( \sqrt{1 -  {\sin }^{2} \theta } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2\sin \theta \sqrt{1 -  { \sin}^{2} \theta } )}{\pi}  \}}  \,  \cos \theta d \theta }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}( \cos \bigg(  \frac{\pi}{2} +  \theta \bigg)(  {\cos }^{} \theta  ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2\sin \theta  \cos\theta )}{\pi}  \}}  \,  \cos \theta d \theta }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{ \bigg[  \bigg(  \frac{\pi}{2} +  \theta \bigg)\bigg]}^{ - 1} }{  {\cos }^{} \theta  \: \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (\sin 2\theta   )}{\pi}  \}}  \,  \cos \theta d \theta }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{   \bigg(  \frac{\pi}{2} +  \theta \bigg)}^{ - 1} }{    \: \log  \:  \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)}  \,  d \theta }

\displaystyle \sf{ \implies \: I =  \frac{2}{\pi}  \int\limits_{}^{}  \frac{{   \bigg( 1 +   \frac{ 2\theta }{\pi}  \bigg)}^{ - 1} }{    \: \log  \:  \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)}  \,  d \theta }

\displaystyle \sf{ \implies \: I =  \frac{2}{\pi}  \int\limits_{}^{}  \frac{{ 1 }^{ } }{  \bigg( 1 +   \frac{ 2\theta }{\pi}  \bigg)  \: \log  \:  \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)}  \,  d \theta }

\displaystyle \sf{ Let \:  \: y = \log \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg) \:  \: then \:  \: dy =  \frac{2}{\pi}  \frac{1}{\bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)} d \theta }

Now from above we get

\displaystyle \sf{ \implies \: I =    \int\limits_{}^{}  \frac{1 }{   \:y}  \,  dy }

\displaystyle \sf{ \implies \: I = \log  |y| + c \:  }

\displaystyle \sf{ \implies \: I = \log   \bigg|\log \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg) \bigg| + c \:  }

\displaystyle \sf{ \implies \: I = \log   \bigg|\log \bigg(\: 1 +   \frac{ 2 { \sin}^{ - 1}x  }{\pi}  \bigg) \bigg| + c \:  }

Where C is integration constant

FINAL ANSWER

\displaystyle \sf{ \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }\displaystyle \sf{  = \log   \bigg|\log \bigg(\: 1 +   \frac{ 2 { \sin}^{ - 1}x  }{\pi}  \bigg) \bigg| + c \:  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find integration of e2x-epower -2x / e2x +epower-2x dx

https://brainly.in/question/31921167

2. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

3. Integral (7cos^3x+8sin^3x)÷3sin^2xcos^2x

https://brainly.in/question/19287036

Answered by kumarisonam4510
0

Answer:

Step-by-step explanation:

Similar questions