Math, asked by shareennisha9755, 1 year ago

integrate (cos 2x - cos 2alpha)/(cos x - cos alpha)

Answers

Answered by sk98764189
27

Answer:

2(sinx\ +\ xcos\alpha )\ +\ c

Step-by-step explanation:

Given equation is

\int {\frac{cos2x\ -\ cos2\alpha}{cosx\ -\ cos\alpha } } \, dx

We know that

cos2x = 2cos^{2}x - 1

cos2\alpha = 2cos^{2}\alpha\ -\ 1

Put these value in above equation,

= \int{\frac{2cos^{2}x\ -\ 1\ - (2cos^{2}\alpha\ -\ 1)}{cosx\ -\ cos\alpha  } \, dx

= \int{\frac{2cos^{2}x\ -\ 1\ -\ 2cos^{2}\alpha\ +\ 1}{cosx\ -\ cos\alpha  } \, dx

= 2\int{\frac{cos^{2}x\ -\ cos^{2}\alpha}{cosx\ -\ cos\alpha } } \, dx

= 2\int{\frac{(cosx\ +\ cos\alpha)(cosx\ -\ cos\alpha)}{(cosx\ -\ cos\alpha)} } \, dx             a^{2}\ -\ b^{2} = (a\ +\ b)(a\ -\ b)

= 2\int{(cosx\ +\ cos\alpha)} \, dx

Integrating,

= 2(sinx\ +\ xcos\alpha )\ +\ c [where c is a constant](Answer)

Note :- where\ \alpha\ is\ a\ constant

Similar questions