Math, asked by Soumojit40, 1 year ago

integrate cos 2x cos 3x

Answers

Answered by Shubhendu8898
33
hope this helps you......
Attachments:

Soumojit40: Thanks bro
Shubhendu8898: ur wlcm
Answered by jitekumar4201
17

Answer:

\displaystyle\int\;\cos{2x}\cos{3x}\;dx=\dfrac{1}{2}\left[\dfrac{\sin{5x}}{5}-\sin{x}\right]+c

Step-by-step explanation:

We have he given,

Let I=\displaystyle\int\;\cos{2x}\cos{3x}\;dx\\I=\dfrac{1}{2}\displaystyle\int\;2\cos{2x}\cos{3x}\;dx

we know that:

2\cos a\cos b=\cos{a+b}+\cos{a-b}

So, we have

I=\dfrac{1}{2}\displaystyle\int\;(\cos{2x+3x}+\cos{2x-3x})\;dx\\I=\dfrac{1}{2}\displaystyle\int\;(\cos{5x}+cos{-x})\;dx\\I=\dfrac{1}{2}\displaystyle\int\;(\cos{5x}-\cos{x})\\I=\dfrac{1}{2}\left[\dfrac{\sin{5x}}{5}-\sin{x}\right]+c

Similar questions