Physics, asked by 424304, 11 months ago

integrate cos theta×(tan theta + sec theta) ​

Answers

Answered by pulakmath007
2

\displaystyle \sf{ \int \: cos \:  \theta(tan\:  \theta + sec\:  \theta)\:  d\theta  } =  - cos \:  \theta +  \theta + c

Given :

\displaystyle \sf{ \int \: cos \:  \theta(tan\:  \theta + sec\:  \theta)\:  d\theta  }

To find :

Integrate the integral

Solution :

Step 1 of 2 :

Write down the given Integral

Here the given Integral is

\displaystyle \sf{ \int \: cos \:  \theta(tan\:  \theta + sec\:  \theta)\:  d\theta  }

Step 2 of 2 :

Integrate the integral

\displaystyle \sf{ \int \: cos \:  \theta(tan\:  \theta + sec\:  \theta)\:  d\theta  }

\displaystyle \sf{ =  \int  cos \:  \theta \bigg( \frac{sin \:  \theta}{cos \:  \theta}  +  \frac{1}{cos \:  \theta} \bigg )\:  d\theta  }

\displaystyle \sf{ =  \int   \bigg( \frac{sin \:  \theta \times cos \:  \theta}{cos \:  \theta}  +  \frac{cos \:  \theta}{cos \:  \theta} \bigg )\:  d\theta  }

\displaystyle \sf{ =  \int   ( sin \:  \theta + 1)\:  d\theta  }

\displaystyle \sf{ =  \int    sin \:  \theta \:  d\theta  +\int  1\:  d\theta  }

\displaystyle \sf{ =  - cos \:  \theta \:  d\theta   + \theta  + c }

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

#SPJ3

Answered by GeniusGirl19
0

Answer:

∫ cosθ(tanθ+secθ) dθ= θ-cosθ + +c

Explanation:

Given:

  cos theta×(tan theta + sec theta) ​

to find:

   integrate cos theta×(tan theta + sec theta) ​

solution:

   ∫ cosθ(tanθ+secθ) dθ

     =∫(cosθ(sinθ/cosθ +1/cosθ) dθ

multiplying cosθ inside the bracket,we get

     = ∫ (sinθ +1)dθ

     =∫ (sinθdθ +dθ)

      =∫ (sinθdθ) + ∫dθ

      = -cosθ + θ+c

where c is the constant of integration.

∫ cosθ(tanθ+secθ) dθ= θ-cosθ + +c

#SPJ2

Similar questions