Math, asked by sampathkothai30, 19 days ago

integrate cosec(ax+b) ​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

\rm \: \displaystyle\int\rm cosec(ax + b) \: dx \\

To evaluate this integral, we use Method of Substitution.

So, Substitute

\rm \: ax + b = y

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}(ax + b) = \dfrac{d}{dx}y

\rm \: a = \dfrac{dy}{dx}

\rm\implies \:dx \:  =  \:  \dfrac{1}{a}  \: dy

So, on substituting these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm cosecy  \times \dfrac{1}{a} \: dy

\rm \:  =  \: \dfrac{1}{a} \: ( -  \: cosecy \: coty \: ) \:  +  \: c

\rm \:  =  \: -  \:  \dfrac{cosecy \: coty}{a} \: +  \: c

\rm \:  =  \: -  \:  \dfrac{cosec(ax + b) \: cot(a + b)}{a} \: +  \: c \\

Hence

\rm \:\displaystyle\int\rm cosec(ax + b) \: dx  =  \: -  \:  \dfrac{cosec(ax + b) \: cot(a + b)}{a} \: +  \: c \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by jaswasri2006
2

refer the given attachment

Attachments:
Similar questions