Math, asked by Mubashshira9025, 1 year ago

Integrate cosecx /cosecx - cotx dx

Answers

Answered by Viny44
19
please find the solution in the attached image
Attachments:
Answered by SocioMetricStar
1

The integration for the given integral is

\int \frac{\csc \left(x\right)}{\csc \left(x\right)-\cot \left(x\right)}dx=-\frac{1}{\tan \left(\frac{x}{2}\right)}+C

Step-by-step explanation:

We have been given that

\int \frac{\csc \left(x\right)}{\csc \left(x\right)-\cot \left(x\right)}dx

Apply the u- substitution

u=\tan \left(\frac{x}{2}\right)\\\\du=\frac{1}{2}\sec^2\frac{x}{2}dx

Thus, the integral becomes

=\int \frac{1}{u^2}du

=\int \:u^{-2}du

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1

=\frac{u^{-2+1}}{-2+1}

Substitute back u=\tan \left(\frac{x}{2}\right)

=\frac{\tan ^{-2+1}\left(\frac{x}{2}\right)}{-2+1}=-\frac{1}{\tan \left(\frac{x}{2}\right)}+C

#Learn More:

Integrate the definite integral

https://brainly.in/question/4630073

Similar questions