integrate cosx/1+tanx
please solve
Answers
Answered by
3
Answer:
hii here is ur answer!!
*A2A*
cos2x1+tanx=cos3xcosx+sinx
Let I=∫cos3xcosx+sinxdx and J=∫sin3xcosx+sinxdx
I+J=∫cos3x+sin3xcosx+sinxdx=∫(1−sinxcosx)dx=x+12cos2x+C1
I−J=∫cos3x−sin3xcosx+sinxdx=∫(cosx−sinx)(1+sinxcosx)cosx+sinxdx
Put cosx+sinx=t to get,
I−J=12∫t2+1tdt=12∫t+1tdt=14t2+12logt+C2
=14(cosx+sinx)2+12log(cosx+sinx)+C2
Thus,
[Math Processing Error]
[Math Processing Error]
Now, I=I+J+I−J2
Therefore,
I=x2+14cos2x+18(cosx+sinx)2+14log(cosx+sinx)+C
hope helpful!
Similar questions