Math, asked by shivshankarpalp4ckeq, 1 year ago

Integrate cosx/cos(x+a)dx

Answers

Answered by priyadharsan
73
Substitute t for (x+a). Hope this is helpful.
Attachments:

shivshankarpalp4ckeq: Welcome
shivshankarpalp4ckeq: All the very best
priyadharsan: so what's your plan?
shivshankarpalp4ckeq: Taking admission in engineering college
priyadharsan: do well
priyadharsan: all the best
priyadharsan: bye
shivshankarpalp4ckeq: Thanks
shivshankarpalp4ckeq: Nice to meet you
shivshankarpalp4ckeq: Bye
Answered by InesWalston
37

Answer-

\int\ \frac{\cos x}{\cos (x+a)} \, dx=(x+a)\cos a+\sin a.\log \sec (x+a)+c

Solution-

\int\ \frac{\cos x}{\cos (x+a)} \, dx

Putting (x+a) as t,

\Rightarrow x+a =t\ \ \ \ \ \ \ \ \ \ \Rightarrow x=t-a \\ \Rightarrow dx =dt

=\int\ \frac{\cos (t-a)}{\cos t} \, dt

=\int\ \frac{\cos t.\cos a+\sin t.\sin a}{\cos t} \, dt

=\int\ (\frac{\cos t.\cos a}{\cos t} +\frac{\sin t.\sin a}{\cos t}) \, dt

=\int\ \cos a\, dt+\int \tan t.\sin a \, dt

=\cos a\int dt+\sin a\int \tan t \, dt

=t\cos a+\sin a.\log \sec t+c

=(x+a)\cos a+\sin a.\log \sec (x+a)+c

Similar questions