Math, asked by ananyasinha0203, 1 year ago

Integrate: cosx cos3x dx.

Answers

Answered by tejaswaalia
15
hope it helps you ...just think about these basic formulas in any suvch question
Attachments:
Answered by SocioMetricStar
1

The value of the given integral is

\int \cos \left(x\right)\cos \left(3x\right)dx=\frac{1}{2}\left(\frac{1}{4}\sin \left(4x\right)+\frac{1}{2}\sin \left(2x\right)\right)+C

Step-by-step explanation:

The given integral is

\int \cos \left(x\right)\cos \left(3x\right)dx

Use the identity: \cos \left(s\right)\cos \left(t\right)=\frac{\cos \left(s+t\right)+\cos \left(s-t\right)}{2}

So, the integral becomes

=\int \frac{\cos \left(x+3x\right)+\cos \left(x-3x\right)}{2}dx

Take the constant out of the integral

=\frac{1}{2}\cdot \int \cos \left(x+3x\right)+\cos \left(x-3x\right)dx

Apply the sum rule of integral: \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=\frac{1}{2}\left(\int \cos \left(x+3x\right)dx+\int \cos \left(x-3x\right)dx\right)

Apply the formula for common integral of cosine function

\frac{1}{2}\left(\frac{1}{4}\sin \left(4x\right)+\frac{1}{2}\sin \left(2x\right)\right)+C

#Learn More:

Integrate the definite integral

https://brainly.in/question/4630073

Similar questions