Physics, asked by shubhamsc237761, 2 months ago

integrate (cosx-sinx)dx limit π/4 to 0​

Answers

Answered by Anonymous
13

Answer:

\longrightarrow \: \displaystyle  \sf\int\limits_{0}^{ \frac{\pi}{4} }  \bigg(  \cos(x)  - \sin (x) \bigg) \,dx \\ \\

\longrightarrow \: \displaystyle  \sf \left. \sin(x)   -  \bigg( -  \cos(x)  \bigg)\right| _{0}^{ \frac{\pi}{4} }\\\\

\longrightarrow \: \displaystyle  \sf \left. \bigg[\sin(x)    +  \cos(x)  \bigg]\right| _{0}^{ \frac{\pi}{4} }\\ \\

\longrightarrow \: \displaystyle  \sf \bigg[\sin \bigg( \frac{\pi}{4}  \bigg)    -\sin (0) \bigg] +  \bigg[\cos \bigg( \frac{\pi}{4} \bigg) -  \cos(0)    \bigg]\\\\

\longrightarrow \: \displaystyle  \sf \bigg[\sin ( {45}^{ \circ} )   -\sin ( {0}^{ \circ} )   \bigg] +  \bigg[\cos ( {45}^{ \circ} )  -  \cos    ( {0}^{ \circ} )  \bigg]\\\\

\longrightarrow \: \displaystyle  \sf \bigg[ \frac{1}{ \sqrt{2} }  -0    \bigg] +  \bigg[ \frac{1}{ \sqrt{2} } -  1 \bigg]\\\\

\longrightarrow \: \displaystyle  \sf \frac{1}{ \sqrt{2} }  +   \frac{1}{ \sqrt{2} }   -   1 \\\\

\longrightarrow \: \underline{ \boxed{ \displaystyle   \orange{\bf  \sqrt{2}  - 1}}} \\\\

Similar questions