Math, asked by noahk89, 7 months ago

Integrate cosx/(sinx+√(sinx)
sinx

Answers

Answered by rashich1219
0

Given:

\dfrac{cosx}{sinx+\sqrt{sinx} }

To Find:

Integrate -   \dfrac{cosx}{sinx+\sqrt{sinx} } .

Solution:

Let,

I = \int{\frac{cos x}{sin x + \sqrt{sin x} } } \, dx

now, consider that -

sin x=t\\(cosx) dx= dt

therefore, I become,

I=\int {\dfrac{1}{t+\sqrt{t} } } \, dt\\ =\dfrac{log(t+\sqrt{t} )}{1+\dfrac{t^{3/2} }{3/2} } \\ =\dfrac{log(t+\sqrt{t} )}{\dfrac{3+2t^{3/2} }{3} }\\ =\dfrac{3log(t+\sqrt{t} )}{3+2t^{3/2} }

Since,sinx=t

so, result is -

I=\dfrac{3log(sinx+\sqrt{sinx} )\\}{3+2sinx^{3/2} }

Similar questions