Math, asked by sutarshalaka2003, 5 months ago

integrate cot ( 5x - 4 ) dx​

Answers

Answered by SakshamKumarthegreat
4

Answer:

I=∫ \:  \cot {}^{5}x  \: cosec {}^{4}x \: dx

I=∫cot {}^{5}x \: cosec {}^{2} x \: cosec {}^{2}x \: dx

I=∫cot {}^{5}x \: (1 + cot {}^{2}x) \: cosec {}^{2}x \: dx

I = ∫cot {}^{5}x \: cosec {}^{2}x \: dx \: 2 ∫ \: cot {}^{7}x \: cosec {}^{2}x \: dx

Let

t=cotx⇒dt=−cosec {}^{2}xdx

I=−∫ \: t {}^{5} dt \:  -  \: ∫ t {}^{7} dt

 =  \:  \frac{1}{6}t \:  -  \:  \frac{1}{8}t {}^{8} + c

 =  -  \frac{1}{6}cot {}^{6}x -  \frac{1}{8}cot {}^{8}x + c \: where \: t = cot \: x

Similar questions