Math, asked by Biditas, 11 months ago

Integrate: cot(x) + cosec(x) w.r.t x

Answers

Answered by Anonymous
2

Answer:

2 \ln | \sin \frac{x}{2} |  + c

Step-by-step explanation:

 \int (\cot(x)  +  \cosec(x)  )dx\\   =  \int( \frac{ \cos  x}{ \sin x}  +  \frac{1}{ \sin \: x} )dx \\   =  \int \frac{ \cos x  + 1}{ \sin x} dx \\   = \int \frac{2 \cos ^{2} ( \frac{x}{2} ) }{ 2\sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }dx  \\  =  \int \frac{ \cos( \frac{x}{2}) }{   \sin(\frac{x}{2})}  dx  \\

Now taking

 \sin( \frac{x}{2} )  = t

Differenting both side

 \sin( \frac{x}{2} )  = t \\  \implies \cos( \frac{x}{2} )  \times  \frac{1}{2} dx = dt \\  \implies \cos( \frac{x}{2} ) dx = 2dt

Now using the above value

 \int  \frac{ \cos( \frac{x}{2} ) }{ \sin \frac{x}{2} }  \\  =  \int \frac{2dt}{t}  \\   = 2 \ln t + c \\  = 2 \ln | \sin( \frac{x}{2} ) |  + c

Similar questions