Math, asked by aswinsatheesh03, 3 months ago

Integrate [√cot x +√ tan x ]dx​


y385427: ok wait then i will find the soln
aswinsatheesh03: tnx

Answers

Answered by Asterinn
5

 \rm \implies \displaystyle  \int \rm ( \sqrt{cot \: x}  +  \sqrt{tan \: x} \:  \: )dx

\rm \implies \displaystyle  \int \rm  \bigg( \sqrt{ \dfrac{cos\: x}{sin\: x} }  +   \sqrt{ \dfrac{sin\: x}{cos\: x} }  \:  \bigg )dx

\rm \implies \displaystyle  \int \rm  \bigg({ \dfrac{\sqrt {cos\: x}}{\sqrt{sin\: x}} }  +   { \dfrac{\sqrt{sin\: x}}{\sqrt{cos\: x} }}  \:  \bigg )dx

\rm \implies \displaystyle  \int \rm { \dfrac{{cos\: x + sin \: x}}{\sqrt{sin\: x \: cos\: x}} }  \:  \: dx

\rm \implies \displaystyle  \int \rm { \dfrac{ \sqrt{2} \times  ({cos\: x + sin \: x})}{ \sqrt{2}  \times \sqrt{sin\: x \: cos\: x}} }  \:  \: dx

\rm \implies \displaystyle  \int \rm { \dfrac{ \sqrt{2}  \:  \:  ({cos\: x + sin \: x})}{  \sqrt{2 \: sin\: x \: cos\: x}} }  \:  \: dx

We know that :-

2 sinx cosx = 1 - (sinx - cosx)²

\rm \implies \displaystyle  \int \rm { \dfrac{ \sqrt{2}  \:  \:  ({cos\: x + sin \: x})}{  \sqrt{1 -  {(sin \: x - cos \: x)}^{2} }  } }  \:  \: dx

\rm \implies \: \sqrt{2} \displaystyle  \int \rm { \dfrac{   \:  \:  ({cos\: x + sin \: x})}{  \sqrt{1 -  {(sin \: x - cos \: x)}^{2} }  } }  \:  \: dx

Let , sinx - cosx = t

(cosx + sinx ) dx = dt

\rm \implies \: \sqrt{2} \displaystyle  \int \rm { \dfrac{   \:  \: dt}{  \sqrt{1 -  {t}^{2} }  } }  \:  \: dx

\rm \implies \: \sqrt{2}  \:  \:  {sin}^{ - 1} t + c

Now put t = sinx -cos x

\rm \implies \: \sqrt{2}  \:  \:  {sin}^{ - 1}( sin \: x - cos \: x) + c

Similar questions