Math, asked by Kultar0, 10 months ago

Integrate cotx/cuberoot of sinx dx

Answers

Answered by MaheswariS
3

\underline{\textsf{To find:}}

\mathsf{\displaystyle\int\,\dfrac{cotx}{\sqrt[3]{sinx}}\,dx}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\displaystyle\int\,\dfrac{cotx}{\sqrt[3]{sinx}}\,dx}

\mathsf{=\displaystyle\int\,\dfrac{cosx}{sinx}\dfrac{1}{\sqrt[3]{sinx}}\,dx}

\mathsf{=\displaystyle\int\,\dfrac{cosx}{sinx}\dfrac{1}{(sinx)^\frac{1}{3}}\,dx}

\mathsf{=\displaystyle\int\,\dfrac{cosx}{(sinx)^\frac{4}{3}}\,dx}

\boxed{\begin{minipage}{3cm}$\\\textsf{Take}\,\mathsf{t=sinx}\\\\\mathsf{\dfrac{dt}{dx}=cosx}\\\\\mathsf{dt=cosx\,dx}$\end{minipage}}

\mathsf{=\displaystyle\int\,\dfrac{dt}{t^\frac{4}{3}}}

\mathsf{=\displaystyle\int\,t^\frac{-4}{3}\,dt}

\mathsf{=\dfrac{t^{\frac{-4}{3}+1}}{\frac{-4}{3}+1}+C}

\mathsf{=\dfrac{t^\frac{-1}{3}}{\frac{-1}{3}}+C}

\mathsf{=\dfrac{-3}{t^\frac{1}{3}}+C}

\mathsf{=\dfrac{-3}{(sinx)^\frac{1}{3}}+C}

\underline{\textsf{Answer:}}

\mathsf{\displaystyle\int\,\dfrac{cotx}{\sqrt[3]{sinx}}\,dx=\dfrac{-3}{(sinx)^\frac{1}{3}}+C}

Find more:

Integrate of e^x sec x(1+tanx) dx

https://brainly.in/question/6040969

Integration of sin6x/sin10x sin4x

https://brainly.in/question/24749414

Similar questions