Math, asked by shikhuc9, 3 months ago

integrate dx/1+3cos x =​

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\tt \ \: :  ⟼ (1) \: cosx \:  = \dfrac{1 -  {tan}^{2}\dfrac{x}{2}}{1  +   {tan}^{2}\dfrac{x}{2}}

\tt \ \: :  ⟼ (2) \:  \:  \int \dfrac{dx}{ {a}^{2}  -  {x}^{2} }  = \dfrac{1}{2a}  log(\dfrac{a + x}{a - x} )  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼  \:  Let  \: I \:  = \int \dfrac{dx}{1 + 3cosx}

\tt \ \: :  ⟼  \: I =  \int \dfrac{dx}{1 + 3 \bigg(\dfrac{1 -  {tan}^{2}\dfrac{x}{2}  }{1  +   {tan}^{2}\dfrac{x}{2}}  \bigg)}

☆ Now, taking LCM, we get

\tt \ \: :  ⟼  \:I =   \int \dfrac{dx}{ \bigg( \dfrac{1  +  {tan}^{2}\dfrac{x}{2} + 3 - 3 {tan}^{2}\dfrac{x}{2}}{1  +   {tan}^{2}\dfrac{x}{2}} \bigg)}

\tt \ \: :  ⟼  \:  I = \int \dfrac{1  +   {tan}^{2}\dfrac{x}{2}}{4 -  2{tan}^{2}\dfrac{x}{2}}  \:  \: dx

\tt \ \: :  ⟼  \: I = \dfrac{1}{2}  \int \dfrac{ {sec}^{2}\dfrac{x}{2}   \:  \:  \: dx}{2 -  {tan}^{2}\dfrac{x}{2}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ Now, \: put \: tan\dfrac{x}{2}  = y

\tt \:  ⟼ differentiate \: w.r.t. \: x \: we \: get

\tt \:  ⟼  {sec}^{2} \dfrac{x}{2} \times  \dfrac{1}{2}  = \dfrac{dy}{dx}

\tt\implies \: {sec}^{2} \dfrac{x}{2} dx = 2dy

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ I \:  = \dfrac{1}{2}  \int\dfrac{2 \: dy}{2 -  {y}^{2} }

\tt \ \: :  ⟼  \: I =  \int \dfrac{dy}{ {( \sqrt{2} )}^{2}  -  {y}^{2} }

\tt \ \: :  ⟼ I = \dfrac{1}{2 \sqrt{2} }  log \bigg(\dfrac{ \sqrt{2}  + y}{ \sqrt{2}  - y}  \bigg) + c

\tt \ \: :  ⟼ I = \dfrac{1}{2 \sqrt{2} }  log \bigg(\dfrac{ \sqrt{2}  + tan\dfrac{x}{2} }{ \sqrt{2}  - tan\dfrac{x}{2} }  \bigg) + c

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions