Math, asked by rishichaurasia89, 1 month ago

integrate (dx)/(3 + 4e ^ x) dx​

Answers

Answered by shadowsabers03
6

Given to find,

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{dx}{3+4e^x}$}

Multiplying and dividing by \small\text{$4e^x,$}

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{4e^x\ dx}{4e^x(3+4e^x)}\quad\dots(1)$}

Substitute,

\small\text{$\longrightarrow u=3+4e^x$}

Then we get,

\small\text{$\longrightarrow4e^x=u-3$}

\small\text{$\longrightarrow du=4e^x\ dx$}

Then (1) becomes,

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{du}{(u-3)u}$}

Multiplying and dividing by 3,

\small\text{$\displaystyle\longrightarrow I=\int\dfrac{3\ du}{3(u-3)u}$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\int\dfrac{u-(u-3)\ du}{(u-3)u}$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\int\left(\dfrac{1}{u-3}-\dfrac{1}{u}\right)\ du$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\left(\int\dfrac{du}{u-3}-\int\dfrac{du}{u}\right)$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\big(\log|u-3|-\log|u|\big)+C_1$}

Undoing substitution \small\text{$u=3+4e^x,$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\big(\log|4e^x|-\log|3+4e^x|\big)+C_1$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\big(\log4+x-\log|3+4e^x|\big)+C_1$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{3}\log4+\dfrac{1}{3}\big(x-\log|3+4e^x|\big)+C_1$}

Taking \small\text{$\dfrac{1}{3}\log4+C_1=C,$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{3}\big(x-\log|3+4e^x|\big)+C}}$}

Answered by TrustedAnswerer19
11

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \sf \: let \: \\   \\ I = \displaystyle \int \:  \rm \:  \frac{1}{3 + 4 {e}^{x} }  \:  \: dx \\  \\  {\pink{{ \boxed{ \begin{array}{cc}  \sf \: substitute \:  \\  \rm \: u = 3 + 4 {e}^{x}  \\  \rm \implies \: \frac{du}{dx}  = 4 {e}^{x}  \\   \rm \implies \:dx =  \frac{1}{4 {e}^{x} }du  \end{array}}}}} \\  \\  = \displaystyle \int \:  \rm \: \frac{1}{4 {e}^{x} \: .u } \: du \\  \\  = \displaystyle \int \:  \rm \:  \frac{1}{(u - 3)u}   \: du \\  \\  = \displaystyle \int \:  \rm \:  \frac{1}{(1 -  \frac{3}{u} ) {u}^{2} } \: du \\  \\ {\pink{ { \boxed{ \begin{array}{cc}   \sf \: substitute \:  \\  \rm \: v = 1 -  \frac{3}{u}  \\  \\   \rm \implies \: \frac{dv}{du}  =  \frac{3}{ {u}^{2} }   \\  \\   \rm \implies \:du =  \frac{ {u}^{2} }{3}  \: dv \end{array}}}}}  \\  \\  = \frac{1}{3}  \displaystyle \int \:  \rm \:  \frac{1}{v} \: dv \\  \\   =  \frac{1}{3}\times   \rm \: \ln \: v + c \\  \\  \rm =  \frac{1}{3}  \times  ln(1 -  \frac{3}{u} ) + c \\  \\  \rm =  \frac{1}{3}  \times  \ln(1 -  \frac{3}{3 + 4 {e}^{x} } ) + c \\  \\  \sf = answer \end{array}}}}}

Note: C is a integral constant

Similar questions