Integrate dx/ 3sin^2x+5cos^2x
Answers
Answered by
4
Given : ∫ dx/(3sin²x + 5cos²x)
To Find : Integrate
Solution:
∫ dx/(3sin²x + 5cos²x)
Divide numerator & denominator by cos²x
1/cos²x = sec² x , sin²x/cos²x = tan² x
= ∫ sec²x dx / ( 3tan²x + 5)
= (1/3)∫ sec²x dx / ( tan²x + 5/3) . . Eq1
Assume tanx = y
sec²x dx = dy
Substitute in Eq1
= (1/3)∫ dy / ( y² + 5/3)
= (1/3)∫ dy / ( y² + (√5/√3)²)
∫ dx/(x² + a²) = (1/a)tan⁻¹(x/a) + c
= (1/3) (1/√5/√3) tan⁻¹( y/(√5/√3) + c
= (1/√15)tan⁻¹(√3y/√5) + c
y = tanx
= (1/√15)tan⁻¹(√3tanx/√5) + c
∫ dx/(3sin²x + 5cos²x) = (1/√15)tan⁻¹(√3tanx/√5) + c
Learn More:
Integration of x²×sec²(x³) dx - Brainly.in
https://brainly.in/question/18063473
integration x^4sin (x^5+6)
https://brainly.in/question/23787104
Similar questions