Math, asked by deeksha9594, 11 months ago

Integrate dx/ 3sin^2x+5cos^2x

Answers

Answered by amitnrw
4

Given : ∫ dx/(3sin²x + 5cos²x)

To Find : Integrate

Solution:

∫ dx/(3sin²x + 5cos²x)

Divide numerator & denominator by cos²x

1/cos²x = sec² x   , sin²x/cos²x = tan² x  

= ∫ sec²x dx / ( 3tan²x + 5)

= (1/3)∫ sec²x dx / (  tan²x + 5/3)  .   . Eq1

Assume tanx = y

sec²x dx  = dy

Substitute in Eq1

=  (1/3)∫  dy / (  y²  + 5/3)

= (1/3)∫  dy / (  y²  + (√5/√3)²)

∫ dx/(x² + a²)  = (1/a)tan⁻¹(x/a) + c

= (1/3) (1/√5/√3) tan⁻¹( y/(√5/√3) + c

= (1/√15)tan⁻¹(√3y/√5) + c

y =  tanx

=  (1/√15)tan⁻¹(√3tanx/√5) + c

∫ dx/(3sin²x + 5cos²x) =  (1/√15)tan⁻¹(√3tanx/√5) + c  

Learn More:

Integration of x²×sec²(x³) dx - Brainly.in

https://brainly.in/question/18063473

integration x^4sin (x^5+6)

https://brainly.in/question/23787104

Similar questions