Math, asked by omharshu1991, 1 month ago

integrate dx/cosx-sinx​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\rm  \frac{1}{cosx - sinx} \: dx

can be rewritten as

\rm \:  =  \: \dfrac{1}{ \sqrt{2} } \displaystyle\int\rm  \frac{1}{\dfrac{1}{ \sqrt{2} }cosx - \dfrac{1}{ \sqrt{2} }sinx} \: dx

We know

\boxed{ \tt{ \: cos\dfrac{\pi}{4} = sin\dfrac{\pi}{4} = \dfrac{1}{ \sqrt{2} } \: }}

So, using this

\rm \:  =  \: \dfrac{1}{ \sqrt{2} }\displaystyle\int\rm  \frac{1}{cos\dfrac{\pi}{4}cosx - sin\dfrac{\pi}{4}sinx} \: dx

We know

\boxed{ \tt{ \: cosx \: cosy \:  -  \: sinx \: siny \:  =  \: cos(x + y) \: }}

So, using this, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{2} }\displaystyle\int\rm  \frac{1}{cos\bigg(x + \dfrac{\pi}{4} \bigg) } \: dx

\rm \:  =  \: \dfrac{1}{ \sqrt{2} }\displaystyle\int\rm sec\bigg(x + \dfrac{\pi}{4}\bigg) \: dx

We know,

\boxed{ \tt{ \: \displaystyle\int\rm secx \: dx \:  =  \: log |secx \:  +  \: tanx|  \:  +  \: c \: }}

So, using this, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{2} }log\bigg |sec\bigg(x + \dfrac{\pi}{4}\bigg) + tan \bigg(x + \dfrac{\pi}{4} \bigg) \bigg|  + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions