Math, asked by Amruthdev, 1 year ago

integrate dx/cosx-sinx

Answers

Answered by Anonymous
8
Hi Mate!!

cos ( x ) - sin ( x ) = √2 { Cos ( 45 + x ) }

1 / √2 { log ( sec ( 45 + x ) + Tan ( 45 + x) }
Answered by isyllus
39

Answer:

I=\dfrac{1}{\sqrt{2}}\ln|\tan(\frac{x}{2}-\frac{\pi}{8})|+C

Step-by-step explanation:

Given: I=\int \dfrac{dx}{\cos x-\sin x}

Multiply and divide by \sqrt{2} at denominator

I=\dfrac{1}{\sqrt{2}}\int \dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}

I=\dfrac{1}{\sqrt{2}}\int \dfrac{dx}{\cos\frac{\pi}{4}\cos x-\sin\frac{\pi}{4}\sin x}

\because \cos A\cos B-\sin A\sin B=\cos(A+B)

I=\dfrac{1}{\sqrt{2}}\int \dfrac{dx}{\cos(x+\frac{\pi}{4})}

I=\dfrac{1}{\sqrt{2}}\int \sec(x+\frac{\pi}{4})dx

I=\dfrac{1}{\sqrt{2}}\ln|\tan(x+\frac{\pi}{4})+\sec(x+\frac{\pi}{4})|+C

\because \tan x=\dfrac{\sin x}{\cos x},\sec x=\dfrac{1}{\cos x}

I=\dfrac{1}{\sqrt{2}}\ln|\tan(\frac{x}{2}-\frac{\pi}{8})|+C

Similar questions